Skip to main content
Log in

Bioinspired directional liquid transport induced by the corner effect

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Many natural creatures have demonstrated unique abilities in directional liquid transport (DLT) for better adapting to the local environment, which, for a long time, have inspired the material fabrication for applications in microfluidics, self-cleaning, water collection, etc. Recently, DLTs aroused by the corner effect have been witnessed in various natural organisms, where liquid transports/spreads spontaneously along the corner structures in microgrooves, wedges or conical structures driven by micro-/nano- scaled capillary forces without external energy input. Particularly, these DLTs show advantages of ultrahigh speed, continuous proceeding, and/or external controllability. Here, we reviewed recent research advances on the bioinspired DLTs induced by the corner effect, as well as the involved mechanisms and the artificial counterpart materials with various applications. We also introduced some bioinspired materials that are capable of stimulus-responsive DLT under external fields. Finally, we suggested perspectives of the bioinspired DLTs in liquid manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247.

    Google Scholar 

  2. Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

    CAS  Google Scholar 

  3. Xue, Y.; Wang, T.; Shi, W. W.; Sun, L. L.; Zheng, Y. M. Water collection abilities of green bristlegrass bristle. RSC Adv. 2014, 4, 40837–40840.

    CAS  Google Scholar 

  4. Zheng, Y. M.; Gao, X. F.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3, 178–182.

    CAS  Google Scholar 

  5. Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W. Leaf surface structures enable the endemic namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. Roy. Soc. Interface 2012, 9, 1965–1974.

    CAS  Google Scholar 

  6. Feng, S. L.; Zhu, P. G.; Zheng, H. X.; Zhan, H. Y.; Chen, C.; Li, J. Q.; Wang, L. Q.; Yao, X.; Liu, Y. H.; Wang, Z. K. Three-dimensional capillary ratchet-induced liquid directional steering. Science 2021, 373, 1344–1348.

    CAS  Google Scholar 

  7. Comanns, P.; Buchberger, G.; Buchsbaum, A.; Baumgartner, R.; Kogler, A.; Bauer, S.; Baumgartner, W. Directional, passive liquid transport: The texas horned lizard as a model for a biomimetic “liquid diode”. J. Roy. Soc. Interface 2015, 12, 20150415.

    Google Scholar 

  8. Parker, A. R.; Lawrence, C. R. Water capture by a desert beetle. Nature 2001, 414, 33–34.

    CAS  Google Scholar 

  9. Song, J. L.; Liu, Z. A.; Wang, X. Y.; Liu, H.; Lu, Y.; Deng, X.; Carmalt, C. J.; Parkin, I. P. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. J. Mater. Chem. A 2019, 7, 13567–13576.

    CAS  Google Scholar 

  10. Ju, J.; Xiao, K.; Yao, X.; Bai, H.; Jiang, L. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv. Mater. 2013, 25, 5937–5942.

    CAS  Google Scholar 

  11. Wang, Q. Q.; He, Y.; Geng, X. X.; Hou, Y. P.; Zheng, Y. M. Enhanced fog harvesting through capillary-assisted rapid transport of droplet confined in the given microchannel. ACS Appl. Mater. Interfaces 2021, 13, 48292–48300.

    CAS  Google Scholar 

  12. Feng, S. L.; Wang, Q. Q.; Xing, Y.; Hou, Y. P.; Zheng, Y. M. Continuous directional water transport on integrating tapered surfaces. Adv. Mater. Interfaces 2020, 7, 2000081.

    CAS  Google Scholar 

  13. Chen, H. W.; Zhang, P. F.; Zhang, L. W.; Liu, H. L.; Jiang, Y.; Zhang, D. Y.; Han, Z. W.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85–89.

    CAS  Google Scholar 

  14. Luan, K.; He, M. J.; Xu, B. J.; Wang, P. W.; Zhou, J. J.; Hu, B. B.; Jiang, L.; Liu, H. Spontaneous directional self-cleaning on the feathers of the aquatic bird Anser cygnoides domesticus induced by a transient superhydrophilicity. Adv. Funct. Mater. 2021, 31, 2010634.

    CAS  Google Scholar 

  15. Meng, Q. A.; Xu, B. J.; Tang, Z. X.; Wei, Y.; Jiang, L.; Liu, H. Controlling directional liquid transport on dual cylindrical fibers with oriented open-wedges. Adv. Mater. Interfaces 2022, 9, 2101749.

    CAS  Google Scholar 

  16. Chen, H. W.; Ran, T.; Gan, Y.; Zhou, J. J.; Zhang, Y.; Zhang, L. W.; Zhang, D. Y.; Jiang, L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018, 17, 935–942.

    CAS  Google Scholar 

  17. Xu, B. J.; He, M. J.; Tang, Z. X.; Jiang, L.; Liu, H. Long-term super-amphiphilic shaped-fiber with multi-scale grooved structures: Toward spontaneous self-cleaning. Adv. Funct. Mater. 2021, 31, 2102877.

    CAS  Google Scholar 

  18. Wang, Z. M.; Lu, Y.; Huang, S.; Yin, S. H.; Chen, F. J. Bamboo-joint-like platforms for fast, long-distance, directional, and spontaneous transport of fluids. Biomicrofluidics 2020, 14, 034105.

    CAS  Google Scholar 

  19. Tenjimbayashi, M.; Kawamura, K.; Shiratori, S. Continuous directional water transport on hydrophobic slippery ventral skin of Lampropeltis pyromelana. Adv. Mater. Interfaces 2020, 7, 2000984.

    Google Scholar 

  20. Lee, M.; Oh, J.; Lim, H.; Lee, J. Enhanced liquid transport on a highly scalable, cost-effective, and flexible 3D topological liquid capillary diode. Adv. Funct. Mater. 2021, 31, 2011288.

    CAS  Google Scholar 

  21. Li, J. Q.; Li, Y. C.; Zheng, H. X.; Liu, M. J.; Gu, H. J.; Lu, K. Y.; Zhou, X. F.; Wang, Z. K. Strengthening unidirectional liquid pumping using multi-biomimetic structures. Extreme Mech. Lett. 2021, 43, 101144.

    Google Scholar 

  22. Xu, W. Z.; Xing, Y.; Liu, J.; Wu, H. P.; Cui, Y.; Li, D. W.; Guo, D. Y.; Li, C. R.; Liu, A. P.; Bai, H. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 2019, 13, 7930–7938.

    CAS  Google Scholar 

  23. Li, J. Q.; Zheng, H. X.; Yang, Z. B.; Wang, Z. K. Breakdown in the directional transport of droplets on the peristome of pitcher plants. Commun. Phys. 2018, 1, 35.

    Google Scholar 

  24. Liu, J.; Cao, M.; Li, L.; Xu, X.; Zheng, J.; Yao, W.; Hou, X. Bioinspired interfacial design for gravity-independent fluid transport control. Giant 2022, 10, 100100.

    Google Scholar 

  25. Ju, J.; Zheng, Y. M.; Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Acc. Chem. Res. 2014, 47, 2342–2352.

    CAS  Google Scholar 

  26. Zhang, S. N.; Huang, J. Y.; Chen, Z.; Lai, Y. K. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small 2017, 13, 1602992.

    Google Scholar 

  27. Xu, T.; Lin, Y. C.; Zhang, M. X.; Shi, W. W.; Zheng, Y. M. High-efficiency fog collector: Water unidirectional transport on heterogeneous rough conical wires. ACS Nano 2016, 10, 10681–10688.

    CAS  Google Scholar 

  28. Liu, L. Y.; Liu, S. Y.; Schelp, M.; Chen, X. F. Rapid 3D printing of bioinspired hybrid structures for high-efficiency fog collection and water transportation. ACS Appl. Mater. Interfaces 2021, 13, 29122–29129.

    CAS  Google Scholar 

  29. Cheng, Y. Q.; Wang, M. M.; Sun, J.; Liu, M. J.; Du, B. G.; Liu, Y. B.; Jin, Y. K.; Wen, R. F.; Lan, Z.; Zhou, X. F. et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection. Nano Lett. 2021, 21, 7411–7418.

    CAS  Google Scholar 

  30. Li, K.; Ju, J.; Xue, Z. X.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 2013, 4, 2276.

    Google Scholar 

  31. Cui, Z. H.; Xiao, L.; Li, Y. X.; Zhang, Y. B.; Li, G. Q.; Bai, H. Y.; Tang, X. X.; Zhou, M. L.; Fang, J. H.; Guo, L. et al. A fishbone-inspired liquid splitter enables directional droplet transportation and spontaneous separation. J. Mater. Chem. A 2021, 9, 9719–9728.

    CAS  Google Scholar 

  32. Li, N.; Yu, C. L.; Si, Y. F.; Song, M. R.; Dong, Z. C.; Jiang, L. Janus gradient meshes for continuous separation and collection of flowing oils under water. ACS Appl. Mater. Interfaces 2018, 10, 7504–7511.

    CAS  Google Scholar 

  33. Ji, J. W.; Jiao, Y. L.; Song, Q. R.; Zhang, Y.; Liu, X. J.; Liu, K. Bioinspired geometry-gradient metal slippery surface by one-step laser ablation for continuous liquid directional self-transport. Langmuir 2021, 37, 5436–5444.

    CAS  Google Scholar 

  34. Li, X.; Li, J. Q.; Dong, G. N. Bioinspired topological surface for directional oil lubrication. ACS Appl. Mater. Interfaces 2020, 12, 5113–5119.

    Google Scholar 

  35. Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748.

    CAS  Google Scholar 

  36. Chen, P.; Li, X. D.; Ma, J. F.; Zhang, R.; Qin, F.; Wang, J. J.; Hu, T. S.; Zhang, Y. L.; Xu, Q. Bioinspired photodetachable dry self-cleaning surface. Langmuir 2019, 35, 6379–6386.

    CAS  Google Scholar 

  37. Peng, Z. T.; Chen, Y.; Wu, T. Z. Ultrafast microdroplet generation and high-density microparticle arraying based on biomimetic Nepenthes peristome surfaces. ACS Appl. Mater. Interfaces 2020, 12, 47299–47308.

    CAS  Google Scholar 

  38. Zarei, M. Advances in point-of-care technologies for molecular diagnostics. Biosens. Bioelectron. 2017, 98, 494–506.

    CAS  Google Scholar 

  39. Charmet, J.; Arosio, P.; Knowles, T. P. J. Microfluidics for protein biophysics. J. Mol. Biol. 2018, 430, 565–580.

    CAS  Google Scholar 

  40. Li, H. L.; Liu, P.; Kaur, G.; Yao, X.; Yang, M. S. Transparent and gas-permeable liquid marbles for culturing and drug sensitivity test of tumor spheroids. Adv. Healthc. Mater. 2017, 6, 1700185.

    Google Scholar 

  41. Cho, H. J.; Preston, D. J.; Zhu, Y. Y.; Wang, E. N. Nanoengineered materials for liquid—vapour phase-change heat transfer. Nat. Rev. Mater. 2017, 2, 16092.

    CAS  Google Scholar 

  42. Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 21, 4617–4623.

    CAS  Google Scholar 

  43. Wang, R.; Wu, F. F.; Yu, F. F.; Zhu, J.; Gao, X. F.; Jiang, L. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res. 2021, 14, 1429–1434.

    CAS  Google Scholar 

  44. Zhang, L.; Guo, Z. Q.; Sarma, J.; Zhao, W. W.; Dai, X. M. Gradient quasi-liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 2021, 31, 2008614.

    CAS  Google Scholar 

  45. Wang, T. Q.; Chen, H. X.; Liu, K.; Li, Y.; Xue, P. H.; Yu, Y.; Wang, S. L.; Zhang, J. H.; Kumacheva, E.; Yang, B. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas—liquid separation. Nanoscale 2014, 6, 3846–3853.

    CAS  Google Scholar 

  46. Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040.

    CAS  Google Scholar 

  47. Kong, T.; Brien, R.; Njus, Z.; Kalwa, U.; Pandey, S. Motorized actuation system to perform droplet operations on printed plastic sheets. Lab Chip 2016, 16, 1861–1872.

    CAS  Google Scholar 

  48. Li, J. Q.; Zhou, X. F.; Li, J.; Che, L. F.; Yao, J.; McHale, G.; Chaudhury, M. K.; Wang, Z. K. Topological liquid diode. Sci. Adv. 2017, 3, eaao3530.

    Google Scholar 

  49. Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266–273.

    Google Scholar 

  50. Higuera, F. J.; Medina, A.; Liñán, A. Capillary rise of a liquid between two vertical plates making a small angle. Phys. Fluids 2008, 20, 102102.

    Google Scholar 

  51. Ponomarenko, A.; Quéré, D.; Clanet, C. A universal law for capillary rise in corners. J. Fluid Mech. 2011, 666, 146–154.

    Google Scholar 

  52. Concus, P.; Finn, R. On the behavior of a capillary surface in a wedge. Proc. Natl. Acad. Sci. USA 1969, 63, 292–299.

    CAS  Google Scholar 

  53. Thammanna Gurumurthy, V.; Roisman, I. V.; Tropea, C.; Garoff, S. Spontaneous rise in open rectangular channels under gravity. J. Colloid Interface Sci. 2018, 527, 151–158.

    CAS  Google Scholar 

  54. Deng, D. X.; Tang, Y.; Zeng, J.; Yang, S.; Shao, H. R. Characterization of capillary rise dynamics in parallel micro V-grooves. Int. J. Heat Mass Transf. 2014, 77, 311–320.

    CAS  Google Scholar 

  55. Prakash, M.; Quéré, D.; Bush, J. W. M. Surface tension transport of prey by feeding shorebirds: The capillary ratchet. Science 2008, 320, 931–934.

    CAS  Google Scholar 

  56. Renvoisé, P.; Bush, J. W. M.; Prakash, M.; Quéré, D. Drop propulsion in tapered tubes. Europhys. Lett. 2009, 86, 64003.

    Google Scholar 

  57. Lorenceau, L.; Quéré, D. Drops on a conical wire. J. Fluid Mech. 2004, 510, 29–45.

    Google Scholar 

  58. Bico, J.; Quéré, D. Self-propelling slugs. J. Fluid Mech. 2002, 467, 101–127.

    CAS  Google Scholar 

  59. Wang, Z. L.; Lin, K.; Zhao, Y. P. The effect of sharp solid edges on the droplet wettability. J. Colloid Interface Sci. 2019, 552, 563–571.

    CAS  Google Scholar 

  60. Grishaev, V.; Amirfazli, A.; Chikov, S.; Lyulin, Y.; Kabov, O. Study of edge effect to stop liquid spillage for microgravity application. Microgravity Sci. Technol. 2013, 25, 27–33.

    CAS  Google Scholar 

  61. Oliver, J. F.; Huh, C.; Mason, S. G. Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 1977, 59, 568–581.

    CAS  Google Scholar 

  62. Li, J.; Guo, Z. G. Spontaneous directional transportations of water droplets on surfaces driven by gradient structures. Nanoscale 2018, 10, 13814–13831.

    CAS  Google Scholar 

  63. Wu, Z. Y.; Huang, Y. Y.; Chen, X. Q.; Zhang, X. Capillary-driven flows along curved interior corners. Int. J. Multiphase Flow 2018, 109, 14–25.

    CAS  Google Scholar 

  64. Berthier, J.; Brakke, K. A.; Berthier, E. A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid. Nanofluid. 2014, 16, 779–785.

    CAS  Google Scholar 

  65. Bohn, H. F.; Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA 2004, 101, 14138–14143.

    CAS  Google Scholar 

  66. Taylor, B. Concerning the ascent of water between two glass plates. Phil. Trans. Roy. Soc. Lond. 1712, 27, 538.

    Google Scholar 

  67. Hauksbee, F. X. An experiment touching the ascent of water between two glass plates in an hyperbolick figure. Phil. Trans. Roy. Soc. Lond. 1712, 27, 539–540.

    Google Scholar 

  68. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 18200–18205.

    CAS  Google Scholar 

  69. Bormashenko, E.; Bormashenko, Y.; Stein, T.; Whyman, G.; Bormashenko, E. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie—Baxter wetting hypothesis and Cassie—Wenzel capillarity-induced wetting transition. J. Colloid Interface Sci. 2007, 311, 212–216.

    CAS  Google Scholar 

  70. Kennedy, R. J. Directional water-shedding properties of feathers. Nature 1970, 227, 736–737.

    CAS  Google Scholar 

  71. Bico, J.; Roman, B.; Moulin, L.; Boudaoud, A. Elastocapillary coalescence in wet hair. Nature 2004, 432, 690.

    CAS  Google Scholar 

  72. Duprat, C.; Protière, S.; Beebe, A. Y.; Stone, H. A. Wetting of flexible fibre arrays. Nature 2012, 482, 510–513.

    CAS  Google Scholar 

  73. Wang, Q. B.; Su, B.; Liu, H.; Jiang, L. Chinese brushes: Controllable liquid transfer in ratchet conical hairs. Adv. Mater. 2014, 26, 4889–4894.

    CAS  Google Scholar 

  74. Yu, C. L.; Li, C. X.; Gao, C.; Dong, Z. C.; Wu, L.; Jiang, L. Time-dependent liquid transport on a biomimetic topological surface. ACS Nano 2018, 12, 5149–5157.

    CAS  Google Scholar 

  75. Wang, J.; Yi, S. Z.; Yang, Z. L.; Chen, Y.; Jiang, L. L.; Wong, C. P. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Appl. Mater. Interfaces 2020, 12, 21080–21087.

    CAS  Google Scholar 

  76. Lv, J. A.; Liu, Y. Y.; Wei, J.; Chen, E. Q.; Qin, L.; Yu, Y. L. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179–184.

    CAS  Google Scholar 

  77. Xu, B.; Zhu, C. Y.; Qin, L.; Wei, J.; Yu, Y. L. Light-directed liquid manipulation in flexible bilayer microtubes. Small 2019, 15, 1901847.

    Google Scholar 

  78. Feng, W. Q.; Ueda, E.; Levkin, P. A. Droplet microarrays: From surface patterning to high-throughput applications. Adv. Mater. 2018, 30, 1706111.

    Google Scholar 

  79. Ichimura, K.; Oh, S. K.; Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 2000, 288, 1624–1626.

    CAS  Google Scholar 

  80. An, S.; Zhu, M. Y.; Gu, K.; Jiang, M. D.; Shen, Q. C.; Fu, B. W.; Song, C. Y.; Tao, P.; Deng, T.; Shang, W. Light-driven motion of water droplets with directional control on nanostructured surfaces. Nanoscale 2020, 12, 4295–4301.

    CAS  Google Scholar 

  81. Xiao, Y.; Zarghami, S.; Wagner, K.; Wagner, P.; Gordon, K. C.; Florea, L.; Diamond, D.; Officer, D. L. Moving droplets in 3D using light. Adv. Mater. 2018, 30, 1801821.

    Google Scholar 

  82. Kwon, G.; Panchanathan, D.; Mahmoudi, S. R.; Gondal, M. A.; McKinley, G. H.; Varanasi, K. K. Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nat. Commun. 2017, 8, 14968.

    Google Scholar 

  83. Wang, S. L.; Zhou, R. M.; Hou, Y. Q.; Wang, M.; Hou, X. Photochemical effect driven fluid behavior control in microscale pores and channels. Chin. Chem. Lett. 2022, 33, 3650–3656.

    CAS  Google Scholar 

  84. Cao, M. Y.; Jin, X.; Peng, Y.; Yu, C. M.; Li, K.; Liu, K. S.; Jiang, L. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv. Mater. 2017, 29, 1606869.

    Google Scholar 

  85. Lei, W. W.; Hou, G. L.; Liu, M. J.; Rong, Q. F.; Xu, Y. C.; Tian, Y.; Jiang, L. High-speed transport of liquid droplets in magnetic tubular microactuators. Sci. Adv. 2018, 4, eaau8767.

    CAS  Google Scholar 

  86. Liu, H.; Zheng, S.; Yang, X.; Liao, W. B.; Wang, C.; Miao, W. N.; Tang, J. Y.; Wang, D. Y.; Tian, Y. Magnetic actuation multifunctional platform combining microdroplets delivery and stirring. ACS Appl. Mater. Interfaces 2019, 11, 47642–47648.

    CAS  Google Scholar 

  87. García-Torres, J.; Calero, C.; Sagués, F.; Pagonabarraga, I.; Tierno, P. Magnetically tunable bidirectional locomotion of a self-assembled nanorod—sphere propeller. Nat. Commun. 2018, 9, 1663.

    Google Scholar 

  88. Wang, W. D.; Timonen, J. V. I.; Carlson, A.; Drotlef, D. M.; Zhang, C. T.; Kolle, S.; Grinthal, A.; Wong, T. S.; Hatton, B.; Kang, S. H. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82.

    CAS  Google Scholar 

  89. Guo, J. C.; Wang, D. H.; Sun, Q. Q.; Li, L. X.; Zhao, H. X.; Wang, D. D.; Cui, J. X.; Chen, L. Q.; Deng, X. Omni-liquid droplet manipulation platform. Adv. Mater. Interfaces 2019, 6, 1900653.

    Google Scholar 

  90. Liu, J.; Xu, X.; Lei, Y.; Zhang, M. C.; Sheng, Z. Z.; Wang, H. M.; Cao, M.; Zhang, J.; Hou, X. Liquid gating meniscus-shaped deformable magnetoelastic membranes with self-driven regulation of gas/liquid release. Adv. Mater. 2022, 34, 2107327.

    CAS  Google Scholar 

  91. Li, J. Q.; Zhou, X. F.; Tao, R.; Zheng, H. X.; Wang, Z. K. Directional liquid transport from the cold region to the hot region on a topological surface. Langmuir 2021, 37, 5059–5065.

    CAS  Google Scholar 

  92. Li, C. X.; Yu, C. L.; Hao, D. Z.; Wu, L.; Dong, Z. C.; Jiang, L. Smart liquid transport on dual biomimetic surface via temperature fluctuation control. Adv. Funct. Mater. 2018, 28, 1707490.

    Google Scholar 

  93. Li, J.; Hou, Y. M.; Liu, Y. H.; Hao, C. L.; Li, M. F.; Chaudhury, M. K.; Yao, S. H.; Wang, Z. K. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 2016, 12, 606–612.

    CAS  Google Scholar 

  94. Yakhshi-Tafti, E.; Cho, H. J.; Kumar, R. Droplet actuation on a liquid layer due to thermocapillary motion: Shape effect. Appl. Phys. Lett. 2010, 96, 264101.

    Google Scholar 

  95. Yarin, A. L.; Liu, W. X.; Reneker, D. H. Motion of droplets along thin fibers with temperature gradient. J. Appl. Phys. 2002, 91, 4751–4760.

    CAS  Google Scholar 

  96. Al-Sharafi, A.; Yilbas, B. S.; Ali, H. Water droplet mobility on a hydrophobic surface under a thermal radiative heating. Appl. Therm. Eng. 2018, 128, 92–106.

    Google Scholar 

  97. Han, Y. H.; Zhang, Y. M.; Zhang, M. C.; Chen, B. Y.; Chen, X. Y.; Hou, X. Photothermally induced liquid gate with navigation control of the fluid transport. Fundam. Res. 2021, 1, 800–806.

    CAS  Google Scholar 

  98. Sun, Q. Q.; Wang, D. H.; Li, Y. N.; Zhang, J. H.; Ye, S. J.; Cui, J. X.; Chen, L. Q.; Wang, Z. K.; Butt, H. J.; Vollmer, D. et al. Surface charge printing for programmed droplet transport. Nat. Mater. 2019, 18, 936–941.

    CAS  Google Scholar 

  99. Li, N.; Yu, C. L.; Dong, Z. C.; Jiang, L. Finger directed surface charges for local droplet motion. Soft Matter 2020, 16, 9176–9182.

    CAS  Google Scholar 

  100. Yang, X. L.; Li, Y. M.; Zheng, H. X.; Lu, Y. Saturated surface charging on micro/nanoporous polytetrafluoroethylene for droplet manipulation. ACS Appl. Nano Mater. 2022, 5, 3342–3351.

    CAS  Google Scholar 

  101. Wang, F. X.; Sun, Y. Y.; Zong, G. G.; Liang, W. Y.; Yang, B.; Guo, F. Z.; Yangou, C.; Wang, Y. B.; Zhang, Z. C. Electrothermally assisted surface charge density gradient printing to drive droplet transport. ACS Appl. Mater. Interfaces 2022, 14, 3526–3535.

    CAS  Google Scholar 

  102. Wang, Q. B.; Xu, B. J.; Hao, Q.; Wang, D.; Liu, H.; Jiang, L. In situ reversible underwater superwetting transition by electrochemical atomic alternation. Nat. Commun. 2019, 10, 1212.

    Google Scholar 

  103. Wang, J.; Sun, L. Y.; Zou, M. H.; Gao, W.; Liu, C. H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 2017, 3, e1700004.

    Google Scholar 

  104. Gao, W.; Wang, J.; Zhang, X. X.; Sun, L. Y.; Chen, Y. P.; Zhao, Y. J. Electric-tunable wettability on a paraffin-infused slippery pattern surface. Chem. Eng. J. 2020, 381, 122612.

    CAS  Google Scholar 

  105. Lu, X. Y.; Kong, Z.; Xiao, G. Z.; Teng, C.; Li, Y. N.; Ren, G. Y.; Wang, S. B.; Zhu, Y.; Jiang, L. Polypyrrole whelk-like arrays toward robust controlling manipulation of organic droplets underwater. Small 2017, 13, 1701938.

    Google Scholar 

  106. Mannetje, D.; Ghosh, S.; Lagraauw, R.; Otten, S.; Pit, A.; Berendsen, C.; Zeegers, J.; van den Ende, D.; Mugele, F. Trapping of drops by wetting defects. Nat. Commun. 2014, 5, 3559.

    Google Scholar 

  107. Pan, Z.; Pitt, W. G.; Zhang, Y. M.; Wu, N.; Tao, Y.; Truscott, T. T. The upside—down water collection system of Syntrichia caninervis. Nat. Plants 2016, 2, 16076.

    Google Scholar 

  108. Li, C. X.; Yu, C. L.; Zhou, S.; Dong, Z. C.; Jiang, L. Liquid harvesting and transport on multiscaled curvatures. Proc. Natl. Acad. Sci. USA 2020, 117, 23436–23442.

    CAS  Google Scholar 

  109. Li, C. X.; Dai, H. Y.; Gao, C.; Wang, T.; Dong, Z. C.; Jiang, L. Bioinspired inner microstructured tube controlled capillary rise. Proc. Natl. Acad. Sci. USA 2019, 116, 12704–12709.

    CAS  Google Scholar 

  110. Teh, S. Y.; Lin, R.; Hung, L. H.; Lee, A. P. Droplet microfluidics. Lab Chip 2008, 8, 198–220.

    CAS  Google Scholar 

  111. Guo, M. T.; Rotem, A.; Heyman, J. A.; Weitz, D. A. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012, 12, 2146–2155.

    CAS  Google Scholar 

  112. Jiao, Z. J.; Nguyen, N. T.; Huang, X. Y.; Ang, Y. Z. Reciprocating thermocapillary plug motion in an externally heated capillary. Microfluid. Nanofluid. 2006, 3, 39–46.

    Google Scholar 

  113. Li, C. X.; Wu, L.; Yu, C. L.; Dong, Z. C.; Jiang, L. Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops. Angew. Chem., Int. Ed. 2017, 56, 13623–13628.

    CAS  Google Scholar 

  114. Narayanamurthy, V.; Nagarajan, S.; Firus Khan, A. Y.; Samsuri, F.; Sridhar, T. M. Microfluidic hydrodynamic trapping for single cell analysis: Mechanisms, methods and applications. Anal. Methods 2017, 9, 3751–3772.

    CAS  Google Scholar 

  115. Nilsson, J.; Evander, M.; Hammarström, B.; Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649, 141–157.

    CAS  Google Scholar 

  116. Lin, C. M.; Lai, Y. S.; Liu, H. P.; Chen, C. Y.; Wo, A. M. Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 2008, 80, 8937–8945.

    CAS  Google Scholar 

  117. Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits. Lab Chip 2018, 18, 2323–2347.

    CAS  Google Scholar 

  118. Zhou, S.; Yu, C. L.; Li, C. X.; Jiang, L.; Dong, Z. C. Droplets crawling on peristome-mimetic surfaces. Adv. Funct. Mater. 2020, 30, 1908066.

    CAS  Google Scholar 

  119. Li, C. X.; Li, N.; Zhang, X. S.; Dong, Z. C.; Chen, H. W.; Jiang, L. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids. Angew. Chem., Int. Ed. 2016, 55, 14988–14992.

    CAS  Google Scholar 

  120. Tang, X. X.; Liu, H. W.; Xiao, L.; Zhou, M. L.; Bai, H. Y.; Fang, J. H.; Cui, Z. H.; Cheng, H.; Li, G. Q.; Zhang, Y. B. et al. A hierarchical origami moisture collector with laser-textured microchannel array for a plug-and-play irrigation system. J. Mater. Chem. A 2021, 9, 5630–5638.

    CAS  Google Scholar 

  121. Li, J.; Zhou, Y. L.; Cong, J. P.; Xu, C. Y.; Ren, L. Q. Bioinspired integrative surface with hierarchical texture and wettable gradient-driven water collection. Langmuir 2020, 36, 14737–14747.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFA0704801), the National Natural Science Foundation of China for Distinguished Young Scholar (No. 22125201), and the National Natural Science Foundation of China (Nos. 21872002 and 22105013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Tang, Z., Xu, B. et al. Bioinspired directional liquid transport induced by the corner effect. Nano Res. 16, 3913–3923 (2023). https://doi.org/10.1007/s12274-022-4866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4866-5

Keywords

Navigation