Skip to main content
Log in

Resisting metal aggregation in pyrolysis of MOFs towards high-density metal nanocatalysts for efficient hydrazine assisted hydrogen production

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The preparation of supported high-density metal nanoparticles (NPs) is of great importance to boost the performance in heterogeneous catalysis. Thermal transformation of metal-organic frameworks (MOFs) has been demonstrated as a promising route for the synthesis of supported metal NPs with high metal loadings, but it is challenge to achieve uniform metal dispersion. Here we report a strategy of “spatial isolation and dopant anchoring” to resist metal aggregation in the pyrolysis of MOFs through converting a bulk MOF into dual-heteroatom-containing flower-like MOF sheets (B/N-MOF-S). This approach can spatially isolate metal ions and increase the number of anchoring sites, thus efficiently building physical and/or chemical barriers to cooperatively prevent metal NPs from aggregation in the high-temperature transformation process. After thermolysis at 1,000 °C, the B/N-MOFS affords B,N co-doped carbon-supported Co NPs (Co/BNC) with uniform dispersion and a high Co loading of 37.3 wt.%, while untreated bulk MOFs yield much larger sizes and uneven distribution of Co NPs. The as-obtained Co/BNC exhibits excellent electrocatalytic activities in both hydrogen evolution and hydrazine oxidation reactions, and only a voltage of 0.617 V at a high current density of 100 mA·cm−2 is required when applied to a two-electrode overall hydrazine splitting electrolyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications.. Chem. Soc. Rev. 2009, 38, 481–494.

    CAS  Google Scholar 

  2. Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

    CAS  Google Scholar 

  3. Wang, L. X.; Wang, L.; Meng, X. J.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.

    CAS  Google Scholar 

  4. Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

    CAS  Google Scholar 

  5. Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for highperformance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297.

    CAS  Google Scholar 

  6. Wu, Y. C.; Wei, W.; Yu, R. H.; Xia, L. X.; Hong, X. F.; Zhu, J. X.; Li, J. T.; Lv, L.; Chen, W.; Zhao, Y. et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910.

    CAS  Google Scholar 

  7. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  8. Zhu, J. X.; Xia, L. X.; Yang, W. X.; Yu, R. H.; Zhang, W.; Luo, W.; Dai, Y. H.; Wei, W.; Zhou, L.; Zhao, Y.; Mai, L. Q. Activating inert sites in cobalt silicate hydroxides for oxygen evolution through atomically doping. Energy Environ. Mater. 2022, 5, 655–661.

    CAS  Google Scholar 

  9. Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  10. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

    CAS  Google Scholar 

  11. Ye, Y. X.; Gong, L. S.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Metalorganic frameworks as a versatile platform for proton conductors. Adv. Mater. 2020, 32, 1907090.

    CAS  Google Scholar 

  12. Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

    CAS  Google Scholar 

  13. Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metalorganic frameworks. Nat. Rev. Mater. 2018, 3, 17075.

    CAS  Google Scholar 

  14. Chen, L. Y.; Wang, H. F.; Li, C. X.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403.

    CAS  Google Scholar 

  15. Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metalorganic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

    CAS  Google Scholar 

  16. Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOFderived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

    CAS  Google Scholar 

  17. Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M. M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 2017, 358, 326–332.

    CAS  Google Scholar 

  18. Wang, C. H.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOFderived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

    CAS  Google Scholar 

  19. Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and singleatom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

    CAS  Google Scholar 

  20. Guan, B. Y.; Yu, L.; Lou, X. W. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 2016, 9, 3092–3096.

    CAS  Google Scholar 

  21. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    CAS  Google Scholar 

  22. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    CAS  Google Scholar 

  23. Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

    Google Scholar 

  24. Tabassum, H.; Guo, W. H.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.

    Google Scholar 

  25. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Google Scholar 

  26. Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.

    Google Scholar 

  27. Yao, W.; Chen, J. M.; Wang, Y. J.; Fang, R. Q.; Qin, Z.; Yang, X. F.; Chen, L. Y.; Li, Y. W. Nitrogen-doped carbon composites with ordered macropores and hollow walls. Angew. Chem., Int. Ed. 2021, 60, 23729–23734.

    CAS  Google Scholar 

  28. Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

    Google Scholar 

  29. Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.

    CAS  Google Scholar 

  30. Cao, L.; Dai, P. C.; Tang, J.; Li, D.; Chen, R. H.; Liu, D. D.; Gu, X.; Li, L. J.; Bando, Y.; Ok, Y. S. et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metalorganic frameworks. J. Am. Chem. Soc. 2020, 142, 8755–8762.

    Google Scholar 

  31. Wang, X. F.; Zhang, F. F.; Gao, L.; Yang, Z. H.; Pan, S. L. Nontoxic KBBF family member Zn2BO3(OH): Balance between beneficial layered structure and layer tendency. Adv. Sci. 2019, 6, 1901679.

    CAS  Google Scholar 

  32. Kou, Z. K.; Guo, B. B.; He, D. P.; Zhang, J.; Mu, S. C. Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction. ACS Energy Lett. 2018, 3, 184–190.

    CAS  Google Scholar 

  33. Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

    CAS  Google Scholar 

  34. Xia, Q. Y.; Yang, H.; Wang, M.; Yang, M.; Guo, Q. B.; Wan, L. M.; Xia, H.; Yu, Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 2017, 7, 1701336.

    Google Scholar 

  35. Zhang, Y. Q.; Zhou, B.; Wei, Z. X.; Zhou, W.; Wang, D. D.; Tian, J.; Wang, T. H.; Zhao, S. L.; Liu, J. L.; Tao, L. et al. Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 2021, 33, 2104791.

    CAS  Google Scholar 

  36. Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

    Google Scholar 

  37. Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

    CAS  Google Scholar 

  38. Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

    CAS  Google Scholar 

  39. Liu, Y.; Zhang, J. H.; Li, Y. P.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Manipulating dehydrogenation kinetics through dualdoping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 2020, 11, 1853.

    CAS  Google Scholar 

  40. Zhu, Y.; Zhang, J. H.; Qian, Q. Z.; Li, Y. P.; Li, Z. Y.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie, Y. Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem., Int. Ed. 2022, 61, e202113082.

    CAS  Google Scholar 

  41. Zhang, J. Y.; Wang, H. M.; Tian, Y. F.; Yan, Y.; Xue, Q.; He, T.; Liu, H. F.; Wang, C. D.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem., Int. Ed. 2018, 57, 7649–7653.

    CAS  Google Scholar 

  42. Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.

    CAS  Google Scholar 

  43. Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. A multidoped electrocatalyst for efficient hydrazine oxidation. Angew. Chem., Int. Ed. 2018, 57, 17168–17172.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21825802, 22138003, 22108083, and 52172142), the Foundation of Advanced Catalytic Engineering Research Center of the Ministry of Education (No. 2020AC006), the Science and Technology Program of Qingyuan City (No. 2021YFJH01002), the Natural Science Foundation of Guangdong Province (No. 2017A030312005), the Guangdong University Students Special Fund for Science and Technology Innovation Cultivation (No. pdjh2022a0031), the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 202210561050), and the Science and Technology Program of Guangzhou (No. 202201010118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyu Chen or Yingwei Li.

Electronic Supplementary Material

12274_2022_4777_MOESM1_ESM.pdf

Resisting metal aggregation in pyrolysis of MOFs towards high-density metal nanocatalysts for efficient hydrazine assisted hydrogen production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Guo, D., Hu, A. et al. Resisting metal aggregation in pyrolysis of MOFs towards high-density metal nanocatalysts for efficient hydrazine assisted hydrogen production. Nano Res. 16, 6067–6075 (2023). https://doi.org/10.1007/s12274-022-4777-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4777-5

Keywords

Navigation