Skip to main content
Log in

High current CO2 reduction realized by edge/defect-rich bismuth nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

CO2 electroreduction has been regarded as an appealing strategy for renewable energy storage. Recently, bismuth (Bi) electrocatalysts have attracted much attention due to their excellent formate selectivity. However, many reported Bi electrocatalysts suffer from low current densities, which are insufficient for industrial applications. To reach the goal of high current CO2 reduction to formate, we fabricate Bi nanosheets (NS) with high activity through edge/terrace control and defect engineering strategy. Bi NS with preferential exposure sites are obtained by topotactic transformation, and the processes are clearly monitored by in-situ Raman and ex-situ X-ray diffraction (XRD). Bi NS-1 with a high fraction of edge sites and defect sites exhibits excellent performance, and the current density is up to ca. 870 mA·cm−2 in the flow cell, far above the industrially applicable level (100 mA·cm−2), with a formate Faradaic efficiency greater than 90%. In-situ Fourier transform infrared (FT-IR) spectra detect *OCHO, and theoretical calculations reveal that the formation energy of *OCHO on edges is lower than that on terraces, while the defects on edges further reduce the free energy changes (ΔG). The differential charge density spatial distributions reveal that the presence of defects on edges causes charge enrichment around the C-H bond, benefiting the stabilization of the *OCHO intermediate, thus remarkably lowering the ΔG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service, R. F. Clean revolution. Science 2015, 350, 1020–1023.

    Article  CAS  Google Scholar 

  2. Schiermeier, Q. Germany’s renewable revolution awaits energy forecast. Nature 2016, 535, 212–213.

    Article  CAS  Google Scholar 

  3. Xu, S. Q. The paradox of the energy revolution in China: A socio-technical transition perspective. Renew. Sustainable Energ. Rev. 2021, 137, 110469.

    Article  Google Scholar 

  4. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  5. An, L.; Chen, R. Direct formate fuel cells: A review. J. Power Sources 2016, 320, 127–139.

    Article  CAS  Google Scholar 

  6. Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. 2020, 132, 15124–15130.

    Article  Google Scholar 

  7. Fan, J.; Zhao, X.; Mao, X. N.; Xu, J.; Han, N.; Yang, H.; Pan, B. B.; Li, Y. S.; Wang, L.; Li, Y. G. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, 2100910.

    Article  CAS  Google Scholar 

  8. Fu, X. B.; Wang, J. A.; Hu, X. B.; He, K.; Tu, Q.; Yue, Q.; Kang, Y. J. Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel. Adv. Funct. Mater. 2022, 32, 2107182.

    Article  CAS  Google Scholar 

  9. Fan, L.; Xia, C.; Zhu, P.; Lu, Y. Y.; Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 2020, 11, 3633.

    Article  CAS  Google Scholar 

  10. De Arquer, F. P. G.; Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Seifitokaldani, A.; Saidaminov, M. I.; Tan, C. S.; Quan, L. N.; Proppe, A.; Kibria, M. G. et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 2018, 30, 1802858.

    Article  Google Scholar 

  11. Yi, L. C.; Chen, J. X.; Shao, P.; Huang, J. H.; Peng, X. X.; Li, J. W.; Wang, G. X.; Zhang, C.; Wen, Z. H. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem. 2020, 132, 20287–20294.

    Article  Google Scholar 

  12. Zhang, M.; Wei, W. B.; Zhou, S. H.; Ma, D. D.; Cao, A. H.; Wu, X. T.; Zhu, Q. L. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 2021, 14, 4998–5008.

    Article  CAS  Google Scholar 

  13. Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

    Article  CAS  Google Scholar 

  14. Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

    Article  Google Scholar 

  15. Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. 2019, 131, 13966–13971.

    Article  Google Scholar 

  16. He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. 2018, 130, 16346–16351.

    Article  Google Scholar 

  17. Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J. et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816.

    Article  CAS  Google Scholar 

  18. Wu, D.; Liu, J. W.; Liang, Y.; Xiang, K.; Fu, X. Z.; Luo, J. L. Electrochemical transformation of facet-controlled BiOI into mesoporous bismuth nanosheets for selective electrocatalytic reduction of CO2 to formic acid. ChemSusChem 2019, 12, 4700–4707.

    Article  CAS  Google Scholar 

  19. Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

    Article  Google Scholar 

  20. Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

    Article  CAS  Google Scholar 

  21. Yuan, W. W.; Wu, J. X.; Zhang, X. D.; Hou, S. Z.; Xu, M.; Gu, Z. Y. In situ transformation of bismuth metal-organic frameworks for efficient selective electroreduction of CO2 to formate. J. Mater. Chem. A 2020, 8, 24486–24492.

    Article  CAS  Google Scholar 

  22. Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

    Article  CAS  Google Scholar 

  23. Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2105246.

    Article  Google Scholar 

  24. He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D open network of interconnected bismuthene arrays for energy-efficient and electrosynthesis-assisted electrocatalytic CO2 reduction. Small 2022, 18, 2105246.

    Article  CAS  Google Scholar 

  25. Cao, C. S.; Xu, Q.; Zhu, Q. L. Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catal. 2022, 2, 693–723.

    Article  Google Scholar 

  26. Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 2022, 18, 2105228.

    Article  CAS  Google Scholar 

  27. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  CAS  Google Scholar 

  28. Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

    Article  CAS  Google Scholar 

  29. Rasouli, A. S.; Wang, X.; Wicks, J.; Lee, G.; Peng, T.; Li, F. W.; McCallum, C.; Dinh, C. T.; Ip, A. H.; Sinton, D. et al. CO2 electroreduction to methane at production rates exceeding 100 mA/cm2. ACS Sustainable Chem. Eng. 2020, 8, 14668–14673.

    Article  Google Scholar 

  30. Gabardo, C. M.; O’Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791.

    Article  CAS  Google Scholar 

  31. Zhao, C. M.; Luo, G.; Liu, X. K.; Zhang, W.; Li, Z. J.; Xu, Q.; Zhang, Q. H.; Wang, H. J.; Li, D. M.; Zhou, F. Y. et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction. Adv. Mater. 2020, 32, 2002382.

    Article  CAS  Google Scholar 

  32. Caratelli, C.; Hajek, J.; Cirujano, F. G.; Waroquier, M.; Xamena, F. X. L. I.; Van Speybroeck, V. Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. J. Catal. 2017, 352, 401–414.

    Article  CAS  Google Scholar 

  33. Wang, X.; Wang, Z. Y.; De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

    Article  CAS  Google Scholar 

  34. Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C—C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

    Article  CAS  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  36. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  CAS  Google Scholar 

  37. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  38. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel—cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  39. Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

    Article  CAS  Google Scholar 

  40. Ringe, S.; Hörmann, N. G.; Oberhofer, H.; Reuter, K. Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. 2022, 122, 10777–10820.

    Article  CAS  Google Scholar 

  41. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

    Article  Google Scholar 

  42. Christensen, R.; Hansen, H. A.; Vegge, T. Identifying systematic DFT errors in catalytic reactions. Catal. Sci. Technol. 2015, 5, 4946–4949.

    Article  CAS  Google Scholar 

  43. Granda-Marulanda, L. P.; Rendon-Calle, A.; Builes, S.; Illas, F.; Koper, M. T. M.; Calle-Vallejo, F. A semiempirical method to detect and correct DFT-based gas-phase errors and its application in electrocatalysis. ACS Catal. 2020, 10, 6900–6907.

    Article  CAS  Google Scholar 

  44. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  CAS  Google Scholar 

  45. Li, Y. X.; Hui, D. P.; Sun, Y. Q.; Wang, Y.; Wu, Z. J.; Wang, C. Y.; Zhao, J. C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123.

    Article  CAS  Google Scholar 

  46. Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B 2006, 110, 8978–8985.

    Article  CAS  Google Scholar 

  47. Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.

    Article  CAS  Google Scholar 

  48. Zhang, D.; Li, J.; Wang, Q. G.; Wu, Q. S. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 2013, 1, 8622–8629.

    Article  CAS  Google Scholar 

  49. Zepeda, M. A.; Picquart, M.; Haro-Poniatowski, E. Laser induced oxidation effects in bismuth thin films. MRS Online Proc. Libr. 2012, 1477, 28–33.

    Google Scholar 

  50. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    Article  CAS  Google Scholar 

  51. Freund, H. J.; Libuda, J.; Bäumer, M.; Risse, T.; Carlsson, A. Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts. Chem. Rec. 2003, 3, 181–201.

    Article  CAS  Google Scholar 

  52. Stevenson, H. P.; Lin, G. W.; Barnes, C. O.; Sutkeviciute, I.; Krzysiak, T.; Weiss, S. C.; Reynolds, S.; Wu, Y.; Nagarajan, V.; Makhov, A. M. et al. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr. D Struct. Biol. 2016, 72, 603–615.

    Article  CAS  Google Scholar 

  53. Yang, C. K.; Shao, R. W.; Wang, Q.; Zhou, T. Y.; Lu, J.; Jiang, N.; Gao, P.; Liu, W.; Yu, Y.; Zhou, H. H. Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism. Energy Storage Mater. 2021, 35, 62–69.

    Article  CAS  Google Scholar 

  54. Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 Nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.

    Article  CAS  Google Scholar 

  55. Sun, W. B.; Wei, Z. M.; Qi, J. D.; Kang, L. Y.; Li, J. C.; Xie, J. F.; Tang, B.; Xie, Y. Rapid and scalable synthesis of Prussian blue analogue nanocubes for electrocatalytic water oxidation. Chin. J. Chem. 2021, 39, 2347–2353.

    Article  CAS  Google Scholar 

  56. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    Article  CAS  Google Scholar 

  57. Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121–9125.

    Article  CAS  Google Scholar 

  58. Lei, F. C.; Tang, Z.; Xu, W. L.; Yu, J.; Li, K.; Yu, J. C. Electronic optimization by coupling feco nanoclusters and Pt nanoparticles to carbon nanotubes for efficient hydrogen evolution. ACS Sustainable Chem. Eng. 2021, 9, 5895–5901.

    Article  CAS  Google Scholar 

  59. Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem. 2021, 133, 25945–25949.

    Article  Google Scholar 

  60. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

    Article  CAS  Google Scholar 

  61. Fan, L.; Liu, C. Y.; Zhu, P.; Xia, C.; Zhang, X.; Wu, Z. Y.; Lu, Y. Y.; Senftle, T. P.; Wang, H. T. Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule 2022, 6, 205–220.

    Article  CAS  Google Scholar 

  62. Singh, M. R.; Kwon, Y.; Lum, Y.; Ager III, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.

    Article  CAS  Google Scholar 

  63. Zhang, J.; Luo, W.; Züttel, A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 2020, 385, 140–145.

    Article  CAS  Google Scholar 

  64. Kwon, S.; Lin, T. C.; Iglesia, E. Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. J. Catal. 2020, 383, 60–76.

    Article  CAS  Google Scholar 

  65. Chen, T.; Wu, G. P.; Feng, Z. C.; Hu, G. S.; Su, W. G.; Ying, P. L.; Li, C. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst. Chin. J. Catal. 2008, 29, 105–107.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22105133 and 22101191), China Postdoctoral Science Foundation (Nos. BX20190222, 2019M663490, and 2021M692261), the Fundamental Research Funds for the Central Universities (Nos. 20826041E4211, 20826041E4258, 20826041E4212, 2021SCU12150 and 2021SCU12151), the China Scholarship Council, and Sichuan Science and Technology Program (No. 2021YJ0405). We thank Ms. Yue Qi of the Comprehensive Training Platform of the Specialized Laboratory in the College of Chemistry at Sichuan University, Dr. Daibing Luo and Dr. Daichuan Ma from the Analytical & Testing Center of Sichuan University for X-ray diffraction work. National Supercomputing Center in Shenzhen is acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixiang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yang, S., Ji, L. et al. High current CO2 reduction realized by edge/defect-rich bismuth nanosheets. Nano Res. 16, 53–61 (2023). https://doi.org/10.1007/s12274-022-4770-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4770-z

Keywords

Navigation