Skip to main content
Log in

Preparation of hollow spherical covalent organic frameworks via Oswald ripening under ambient conditions for immobilizing enzymes with improved catalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The hollow spherical covalent organic frameworks (COFs) have a wide application prospect thanks to their special structures. However, the controllable synthesis of uniform and stable hollow COFs is still a challenge. We herein propose a self-templated method for the preparation of hollow COFs through the Ostwald ripening mechanism under ambient conditions, which avoids most disadvantages of the commonly used hard-templating and soft-templating methods. A detailed time-dependent study reveals that the COFs are transformed from initial spheres to hollow spheres because of the inside-out Ostwald ripening process. The obtained hollow spherical COFs have high crystallinity, specific surface area (2,036 m2·g−1), stability, and single-batch yield. Thanks to unique hollow structure, clear through holes, and hydrophobic pore environment of the hollow spherical COFs, the obtained immobilized lipase (BCL@H-COF-OMe) exhibits higher thermostability, polar organic solvent tolerance, and reusability. The BCL@H-COF-OMe also shows higher catalytic performance than the lipase immobilized on non-hollow COF and free lipase in the kinetic resolution of secondary alcohols. This study provides a simple approach for the preparation of hollow spherical COFs, and will promote the valuable research of COFs in the field of biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  Google Scholar 

  2. Huang, J.; Liu, X. J.; Zhang, W.; Liu, Z. F.; Zhong, H.; Shao, B. B.; Liang, Q. H.; Liu, Y.; Zhang, W.; He, Q. Y. Functionalization of covalent organic frameworks by metal modification: Construction, properties and applications. Chem. Eng. J. 2021, 404, 127136.

    Article  CAS  Google Scholar 

  3. Ma, D. L.; Qian, C.; Qi, Q. Y.; Zhong, Z. R.; Jiang, G. F.; Zhao, X. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res. 2020, 14, 381–386.

    Article  Google Scholar 

  4. Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302.

    Article  CAS  Google Scholar 

  5. Yao, S. C.; Liu, Z. R.; Li, L. L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Lett. 2021, 13, 176.

    Article  CAS  Google Scholar 

  6. Zhang, X. L.; Li, G. L.; Wu, D.; Zhang, B.; Hu, N.; Wang, H. L.; Liu, J. H.; Wu, Y. N. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioelectron. 2019, 145, 111699.

    Article  CAS  Google Scholar 

  7. Baldwin, L. A.; Crowe, J. W.; Pyles, D. A.; McGrier, P. L. Metalation of a mesoporous three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 15134–15137.

    Article  CAS  Google Scholar 

  8. Fan, H. W.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J. H.; Meng, H.; Caro, J. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 2018, 140, 10094–10098.

    Article  CAS  Google Scholar 

  9. Sun, Q.; Fu, C. W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H. Y.; Xiao, F. S.; Ma, S. Q. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 984–992.

    Article  CAS  Google Scholar 

  10. Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 2015, 6, 8508.

    Article  CAS  Google Scholar 

  11. Zhang, S. H.; Xia, W.; Yang, Q.; Kaneti, Y. V.; Xu, X. T.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A.; Na, J.; Tang, J. et al. Core—shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 2020, 396, 125154.

    Article  CAS  Google Scholar 

  12. Huo, T. T.; Yang, Y. F.; Qian, M.; Jiang, H. L.; Du, Y. L.; Zhang, X. Y.; Xie, Y. B.; Huang, R. Q. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials 2020, 260, 120305.

    Article  CAS  Google Scholar 

  13. Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 2020, 142, 6675–6681.

    Article  CAS  Google Scholar 

  14. Liu, Y. Y.; Li, X. C.; Wang, S.; Cheng, T.; Yang, H. Y.; Liu, C.; Gong, Y. T.; Lai, W. Y.; Huang, W. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat. Commun. 2020, 11, 5561.

    Article  CAS  Google Scholar 

  15. Tang, Y.; Li, W. Y.; Muhammad, Y.; Jiang, S. L.; Huang, M. Y.; Zhang, H. Z.; Zhao, Z. X.; Zhao, Z. X. Fabrication of hollow covalent-organic framework microspheres via emulsion-interfacial strategy to enhance laccase immobilization for tetracycline degradation. Chem. Eng. J. 2021, 421, 129743.

    Article  CAS  Google Scholar 

  16. Yec, C. C.; Zeng, H. C. Synthesis of complex nanomaterials via Ostwald ripening. J. Mater. Chem. A 2014, 2, 4843–4851.

    Article  CAS  Google Scholar 

  17. Doan-Nguyen, T. P.; Jiang, S.; Koynov, K.; Landfester, K.; Crespy, D. Ultrasmall nanocapsules obtained by controlling Ostwald ripening. Angew. Chem., Int. Ed. 2021, 60, 18094–18102.

    Article  CAS  Google Scholar 

  18. Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.

    Article  CAS  Google Scholar 

  19. Zhao, W.; Yan, P. Y.; Yang, H. F.; Bahri, M.; James, A. M.; Chen, H. M.; Liu, L. J.; Li, B. Y.; Pang, Z. F.; Clowes, R. et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 2022, 1, 87–95.

    Article  Google Scholar 

  20. Raveendran, S.; Parameswaran, B.; Ummalyma, S. B.; Abraham, A.; Mathew, A. K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 2018, 56, 16–30.

    Article  CAS  Google Scholar 

  21. Tian, K. Y.; Li, Z. A simple biosystem for the high-yielding cascade conversion of racemic alcohols to enantiopure amines. Angew. Chem., Int. Ed. 2020, 59, 21745–21751.

    Article  CAS  Google Scholar 

  22. Yadav, R. K.; Baeg, J. O.; Oh, G. H.; Park, N. J.; Kong, K. J.; Kim, J.; Hwang, D. W.; Biswas, S. K. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461.

    Article  CAS  Google Scholar 

  23. Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Zheng, X. F.; Huang, Z. H.; Jiang, Y. J. MOF-based nanotubes to hollow nanospheres through protein-induced soft-templating pathways. Adv. Sci. 2019, 359, 1252–1264.

    Google Scholar 

  24. Kumar, A.; Park, G. D.; Patel, S. K. S.; Kondaveeti, S.; Otari, S.; Anwar, M. Z.; Kalia, V. C.; Singh, Y.; Kim, S. C.; Cho, B. K. et al. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 2019, 359, 1252–1264.

    Article  CAS  Google Scholar 

  25. Du, Y. J.; Gao, J.; Liu, H. J.; Zhou, L. Y.; Ma, L.; He, Y.; Huang, Z. H.; Jiang, Y. J. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res. 2018, 11, 4380–4389.

    Article  CAS  Google Scholar 

  26. Gan, J. S.; Bagheri, A. R.; Aramesh, N.; Gul, I.; Franco, M.; Almulaiky, Y. Q.; Bilal, M. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis—A review. Int. J. Biol. Macromol. 2021, 167, 502–515.

    Article  CAS  Google Scholar 

  27. Su, D.; Feng, B. W.; Xu, P. F.; Zeng, Q.; Shan, B. X.; Song, Y. G. Covalent organic frameworks and electron mediator-based open circuit potential biosensor for in vivo electrochemical measurements. Anal. Methods 2018, 10, 4320–4328.

    Article  CAS  Google Scholar 

  28. Samui, A.; Happy; Sahu, S. K. Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous Mesoporous Mater. 2020, 291, 109700.

    Article  CAS  Google Scholar 

  29. Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

    Article  CAS  Google Scholar 

  30. Yang, L.; Guo, Q. Y.; Kang, H.; Chen, R. Z.; Liu, Y. Q.; Wei, D. C. Self-controlled growth of covalent organic frameworks by repolymerization. Chem. Mater. 2020, 32, 5634–5640.

    Article  CAS  Google Scholar 

  31. Li, X. L.; Zhang, C. L.; Cai, S. L.; Lei, X. H.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998.

    Article  Google Scholar 

  32. Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004, 108, 3492–3495.

    Article  CAS  Google Scholar 

  33. Feng, J.; Yin, Y. D. Self-templating approaches to hollow nanostructures. Adv. Mater. 2019, 31, 1802349.

    Article  Google Scholar 

  34. Zhao, H.; Liu, G. H.; Liu, Y. T.; Liu, X. L.; Wang, H. X.; Chen, H. X.; Gao, J.; Jiang, Y. J. Metal nanoparticles@covalent organic framework@enzymes: A universal platform for fabricating a metal-enzyme integrated nanocatalyst. ACS Appl. Mater. Interfaces 2022, 14, 2881–2892.

    Article  CAS  Google Scholar 

  35. Wang, Z. F.; Yang, Y.; Zhao, Z. F.; Zhang, P. H.; Zhang, Y. S.; Liu, J. J.; Ma, S. Q.; Cheng, P.; Chen, Y.; Zhang, Z. J. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun. 2021, 12, 1982.

    Article  CAS  Google Scholar 

  36. Shao, P. P.; Li, J.; Chen, F.; Ma, L.; Li, Q. B.; Zhang, M. X.; Zhou, J. W.; Yin, A. X.; Feng, X.; Wang, B. Flexible films of covalent organic frameworks with ultralow dielectric constants under high humidity. Angew. Chem., Int. Ed. 2018, 57, 16501–16505.

    Article  CAS  Google Scholar 

  37. Martínez-Abadía, M.; Mateo-Alonso, A. Structural approaches to control interlayer interactions in 2D covalent organic frameworks. Adv. Mater. 2020, 32, 2002366.

    Article  Google Scholar 

  38. Emmerling, S. T.; Schuldt, R.; Bette, S.; Yao, L.; Dinnebier, R. E.; Kastner, J.; Lotsch, B. V. Interlayer interactions as design tool for large-pore COFs. J. Am. Chem. Soc. 2021, 143, 15711–15722.

    Article  CAS  Google Scholar 

  39. Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. L. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 2013, 135, 546–549.

    Article  CAS  Google Scholar 

  40. Hansch, C.; Leo, A.; Taft, R. W. A survey of hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  41. Magnusson, A. O.; Takwa, M.; Hamberg, A.; Hult, K. An S-selective lipase was created by rational redesign and the enantioselectivity increased with temperature. Angew. Chem., Int. Ed. 2005, 44, 4582–4585.

    Article  CAS  Google Scholar 

  42. Voss, C. V.; Gruber, C. C.; Kroutil, W. Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction. Angew. Chem., Int. Ed. 2008, 47, 741–745.

    Article  CAS  Google Scholar 

  43. Wikmark, Y.; Humble, M. S.; Bäckvall, J. E. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent. Angew. Chem., Int. Ed. 2015, 54, 4284–4288.

    Article  CAS  Google Scholar 

  44. Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

    Article  Google Scholar 

  45. Au, S. K.; Bommarius, B. R.; Bommarius, A. S. Biphasic reaction system allows for conversion of hydrophobic substrates by amine dehydrogenases. ACS Catal. 2014, 4, 4021–4026.

    Article  CAS  Google Scholar 

  46. Klibanov, A. M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078081, 21908040, 21901058, and 22178083); the Natural Science Foundation of Hebei Province (Nos. B2020202021 and B2019202216); Key Research and Development Program of Hebei Province (No. 20372802D); Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering (No. SKLBEE2020011), and the Natural Science Foundation of Tianjin (No. 20JCYBJC00530).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanhua Liu or Yanjun Jiang.

Electronic Supplementary Material

12274_2022_4769_MOESM1_ESM.pdf

Preparation of hollow spherical covalent organic frameworks via Oswald ripening under ambient conditions for immobilizing enzymes with improved catalytic performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, G., Liu, Y. et al. Preparation of hollow spherical covalent organic frameworks via Oswald ripening under ambient conditions for immobilizing enzymes with improved catalytic performance. Nano Res. 16, 281–289 (2023). https://doi.org/10.1007/s12274-022-4769-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4769-5

Keywords

Navigation