Skip to main content
Log in

Multifunctional tubular carbon nanofibers/polyurethane electromagnetic wave absorber with room-temperature self-healing and recyclable performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Incorporating self-healing and recyclable capabilities into microwave absorbing materials is expected to facilitate the life extension, cost reduction, and performance stability, thereby meeting the practical applications. In this research, a recycling and room-temperature self-healing electromagnetic wave (EMW) absorber is designed, in which linear polyurethane cross-linked by aromatic disulfide bonds is used as healable matrix, and tubular carbon nanofibers (TCNFs) are employed to attenuate microwave. The resultant composites with a TCNFs content of 7 wt.% harvest a minimum reflection loss (RLmin) of −39.0 dB and an effective absorption bandwidth (EAB) of 2.9 GHz at a matching thickness of 4.0 mm. Driven by the reversible dynamic bonds including hydrogen bonds and aromatic disulfide bonds, the high healing efficiency of 88.7% at 25 °C and 93.2% at 60 °C is presented. Impressively, even after three repairing cycles at room temperature, a healable efficiency of 86.4% is acquired, and RLmin can still reach −39.1 dB at the same thickness, together with an EAB of 3.0 GHz. Additionally, the results of solvent recycling experiment manifest that the recycled specimen achieves the almost similar mechanical and microwave dissipation properties as original one. These attractive characteristics make the designed self-healing and recyclable composites promising for next-generation EMW consumption devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J. Q.; Huyan, Y.; Yang, Z. T.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Tubular carbon nanofibers: Synthesis, characterization and applications in microwave absorption. Carbon 2019, 152, 255–266.

    Article  CAS  Google Scholar 

  2. Shu, R. W.; Li, W. J.; Wu, Y.; Zhang, J. B.; Zhang, G. Y. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 2019, 362, 513–524.

    Article  CAS  Google Scholar 

  3. He, J.; Liu, S.; Deng, L. W.; Shan, D. Y.; Cao, C.; Luo, H.; Yan, S. Q. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl. Surf. Sci. 2020, 504, 144210.

    Article  CAS  Google Scholar 

  4. Li, X.; Yu, L. J.; Yu, L. M.; Dong, Y. B.; Gao, Q.; Yang, Q. X.; Yang, W. T.; Zhu, Y. F.; Fu, Y. Q. Chiral polyaniline with superhelical structures for enhancement in microwave absorption. Chem. Eng. J. 2018, 352, 745–755.

    Article  CAS  Google Scholar 

  5. Huang, T.; Wu, Z. C.; Yu, Q.; Tan, D. G.; Li, L. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth. Chem. Eng. J. 2019, 359, 69–78.

    Article  CAS  Google Scholar 

  6. Zhang, M.; Zhang, J. H.; Lin, H.; Wang, T.; Ding, S. Q.; Li, Z. J.; Wang, J. H.; Meng, A. L.; Li, Q. D.; Lin, Y. S. Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Compos. Part B-Eng. 2020, 190, 107902.

    Article  CAS  Google Scholar 

  7. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Article  Google Scholar 

  8. Liu, P. B.; Gao, S.; Chen, C.; Zhou, F. T.; Meng, Z. Y.; Huang, Y.; Wang, Y. Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 2020, 169, 276–287.

    Article  CAS  Google Scholar 

  9. Zhao, H. B.; Cheng, J. B.; Zhu, J. Y.; Wang, Y. Z. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 2019, 7, 441–448.

    Article  CAS  Google Scholar 

  10. Cai, Z. X.; Su, L.; Wang, H. J.; Niu, M.; Tao, L. T.; Lu, D.; Xu, L.; Li, M. Z.; Gao, H. F. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 2021, 13, 16704–16712.

    Article  CAS  Google Scholar 

  11. Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

    Article  CAS  Google Scholar 

  12. Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B-Eng. 2020, 200, 108263.

    Article  CAS  Google Scholar 

  13. Zhou, Y.; Wang, S. J.; Li, D. S.; Jiang, L. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and highperformance microwave absorption. Compos. Part B-Eng. 2021, 213, 108701.

    Article  CAS  Google Scholar 

  14. Li, X.; Wen, C. Y.; Yang, L. T.; Zhang, R. X.; Li, X. H.; Li, Y. S.; Che, R. C. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 2021, 175, 509–518.

    Article  CAS  Google Scholar 

  15. Kim, T.; Lee, J.; Lee, K.; Park, B.; Jung, B. M.; Lee, S. B. Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 2019, 361, 1182–1189.

    Article  CAS  Google Scholar 

  16. Wang, Y.; Lu, X. C.; Chen, Y.; Lai, H. R.; Teng, S. Q.; Quan, B. Organic-inorganic hybrid-reinforced flexible and robust 2D papers for high-efficiency microwave-absorbing films. J. Mater. Chem. A 2021, 9, 24503–24509.

    Article  CAS  Google Scholar 

  17. Luo, H.; Chen, F.; Wang, X.; Dai, W. Y.; Xiong, Y.; Yang, J. J.; Gong, R. Z. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A-Appl. Sci. Manuf. 2019, 119, 1–7.

    Article  CAS  Google Scholar 

  18. Pang, H. F.; Duan, Y. P.; Dai, X. H.; Huang, L. X.; Yang, X.; Zhang, T.; Liu, X. J. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. J. Mater. Sci. Technol. 2021, 88, 203–214.

    Article  CAS  Google Scholar 

  19. Choi, W. H.; Choe, H. S.; Nam, Y. W. Multifunctional microwave heating and absorbing honeycomb core using nickel-coated glass fabric. Compos. Part A-Appl. Sci. Manuf 2020, 138, 106070.

    Article  CAS  Google Scholar 

  20. Wang, P.; Zhang, Y. C.; Chen, H. L.; Zhou, Y. Z.; Jin, F. N.; Fan, H. L. Broadband radar absorption and mechanical behaviors of bendable over-expanded honeycomb panels. Compos. Sci. Technol. 2018, 162, 33–48.

    Article  Google Scholar 

  21. Li, W. W.; Jin, H.; Zeng, Z. H.; Zhang, L. P.; Zhang, H.; Zhang, Z. Flexible and easy-to-tune broadband electromagnetic wave absorber based on carbon resistive film sandwiched by silicon rubber/multi-walled carbon nanotube composites. Carbon 2017, 121, 544–551.

    Article  CAS  Google Scholar 

  22. Fan, Q. F.; Yang, X. Z.; Lei, H. S.; Liu, Y. Y.; Huang, Y. X.; Chen, M. J. Gradient nanocomposite with metastructure design for broadband radar absorption. Compos. Part A-Appl. Sci. Manuf. 2020, 129, 105698.

    Article  CAS  Google Scholar 

  23. Zhou, D. F.; Yuan, H.; Yu, Z. R.; Guo, W.; Xiong, Y. L.; Luo, G. Q.; Shen, Q. Broadband electromagnetic absorbing performance by constructing alternate gradient structure (AGS) for PMMA-based foams. Compos. Part A-Appl. Sci. Manuf. 2021, 149, 106557.

    Article  CAS  Google Scholar 

  24. Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 2022, 16, 1150–1159.

    Article  CAS  Google Scholar 

  25. Wang, C. H.; Zong, L. S.; Pan, Y. X.; Li, N.; Liu, Q.; Wang, J. Y.; Jian, X. G. Preparation and characterization of branch-like heteroatoms-doped Ni@C nanofibers for high-performance microwave absorption with thin thickness. Compos. Part B-Eng. 2021, 223, 109114.

    Article  CAS  Google Scholar 

  26. Meng, X.; He, L.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption. Carbon 2022, 194, 207–219.

    Article  CAS  Google Scholar 

  27. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    Article  CAS  Google Scholar 

  28. Song, G. L.; Yang, K. K.; Gai, L. X.; Li, Y. Y.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R. ZIF-67/CMC-derived 3D N-doped hierarchical porous carbon with in-situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption. Compos. Part A-Appl. Sci. Manuf. 2021, 149, 106584.

    Article  CAS  Google Scholar 

  29. Liu, Y. M.; Fan, E. C.; Hou, R. H.; Zhang, P.; Zhang, S. J.; Shao, G. S. A simple synthesis of magnetic metal implanted hierarchical porous carbon networks for efficient microwave absorption. J. Mater. Chem. C 2021, 9, 14866–14875.

    Article  CAS  Google Scholar 

  30. Shi, X. F.; Wu, Z. C.; Liu, Z. W.; Lv, J. G.; Zi, Z. F.; Che, R. C. Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption. J. Mater. Chem. A 2022, 10, 8807–8816.

    Article  CAS  Google Scholar 

  31. Huang, M. Q.; Wang, L.; Liu, Q.; You, W. B.; Che, R. C. Interface compatibility engineering of Multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.

    Article  CAS  Google Scholar 

  32. Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

    Article  CAS  Google Scholar 

  33. Wu, Y. H.; Peng, K. S.; Man, Z. M.; Zang, R.; Li, P. X.; Liu, S. S.; Wang, S. Y.; Liu, P. Y.; Li, P.; Cui, Y. H. A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption. Carbon 2022, 188, 503–512.

    Article  CAS  Google Scholar 

  34. Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

    Article  CAS  Google Scholar 

  35. Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

    Article  CAS  Google Scholar 

  36. Yuan, M.; Zhou, M.; Fu, H. Q. Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band. Compos. Part B-Eng. 2021, 224, 109178.

    Article  CAS  Google Scholar 

  37. Li, Y. H.; Guo, W. J.; Li, W. J.; Liu, X.; Zhu, H.; Zhang, J. P.; Liu, X. J.; Wei, L. H.; Sun, A. L. Tuning hard phase towards synergistic improvement of toughness and self-healing ability of poly(urethane urea) by dual chain extenders and coordinative bonds. Chem. Eng. J. 2020, 393, 124583.

    Article  CAS  Google Scholar 

  38. Liu, Y. H.; Zheng, J.; Zhang, X.; Du, Y. Q.; Li, K.; Yu, G. B.; Jia, Y.; Zhang, Y. Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and waterresistance. J. Colloid Interface Sci. 2021, 593, 105–115.

    Article  CAS  Google Scholar 

  39. Yang, S. W.; Wang, S.; Du, X. S.; Du, Z. L.; Cheng, X.; Wang, H. B. Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem. Eng. J. 2020, 391, 123544.

    Article  CAS  Google Scholar 

  40. Qu, Q. Q.; He, J.; Da, Y. S.; Zhu, M. H.; Liu, Y. Y.; Li, X. X.; Tian, X. Y.; Wang, H. High Toughness polyurethane toward artificial muscles, tuned by mixing dynamic hard domains. Macromolecules 2021, 54, 8243–8254.

    Article  CAS  Google Scholar 

  41. Chang, K.; Jia, H.; Gu, S. Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur. Polym. J. 2019, 112, 822–831.

    Article  CAS  Google Scholar 

  42. Wu, H. H.; Liu, X. D.; Sheng, D. K.; Zhou, Y.; Xu, S. B.; Xie, H. P.; Tian, X. X.; Sun, Y. L.; Shi, B. R.; Yang, Y. M. High performance and near body temperature induced self-healing thermoplastic polyurethane based on dynamic disulfide and hydrogen bonds. Polymer 2021, 214, 123261.

    Article  CAS  Google Scholar 

  43. Yang, Y.; Ye, Z. S.; Liu, X. X.; Su, J. H. A healable waterborne polyurethane synergistically cross-linked by hydrogen bonds and covalent bonds for composite conductors. J. Mater. Chem. C 2020, 8, 5280–5292.

    Article  CAS  Google Scholar 

  44. Guo, Y. F.; Yang, L.; Zhang, L. Z.; Chen, S.; Sun, L. J.; Gu, S. J.; You, Z. W. A dynamically hybrid crosslinked elastomer for room-temperature recyclable flexible electronic devices. Adv. Funct. Mater. 2021, 31, 2106281.

    Article  CAS  Google Scholar 

  45. Wang, Y. M.; Pan, M.; Liang, X. Y.; Li, B. J.; Zhang, S. Electromagnetic wave absorption coating material with self-healing properties. Macromol. Rapid Commun. 2017, 38, 1700447.

    Article  Google Scholar 

  46. Zhou, M.; Yan, Q. M.; Fu, Q.; Fu, H. Q. Self-healable ZnO@multiwalled carbon nanotubes (MWCNTs)/DA-PDMS nanocomposite via Diels—Alder chemistry as microwave absorber: A novel multifunctional material. Carbon 2020, 169, 235–247.

    Article  CAS  Google Scholar 

  47. Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. E.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.

    Article  CAS  Google Scholar 

  48. Li, X. P.; Yu, R.; He, Y. Y.; Zhang, Y.; Yang, X.; Zhao, X. J.; Huang, W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett. 2019, 8, 1511–1516.

    Article  CAS  Google Scholar 

  49. Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240.

    Article  CAS  Google Scholar 

  50. Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

    Article  Google Scholar 

  51. Cai, Y. B.; Zou, H. W.; Zhou, S. T.; Chen, Y.; Liang, M. Room-temperature self-healing ablative composites via dynamic covalent bonds for high-performance applications. ACS Appl. Polym. Mater. 2020, 2, 3977–3987.

    Article  CAS  Google Scholar 

  52. Yao, W. J.; Tian, Q. Y.; Shi, J. Q.; Luo, C. S.; Wu, W. Printable, down/up-conversion triple-mode fluorescence responsive and colorless self-healing elastomers with superior toughness. Adv. Funct. Mater. 2021, 31, 2100211.

    Article  CAS  Google Scholar 

  53. Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Bin Ying, W.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chem. Eng. J. 2021, 410, 128363.

    Article  CAS  Google Scholar 

  54. Ying, W. B.; Yu, Z.; Kim, D. H.; Lee, K. J.; Hu, H.; Liu, Y. W.; Kong, Z. Y.; Wang, K.; Shang, J.; Zhang, R. Y. et al. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 11072–11083.

    Article  CAS  Google Scholar 

  55. Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. Hyper-cross-linked polymers-derived porous tubular carbon nanofibers@TiO2 toward a wide-band and lightweight microwave absorbent at a low loading content. ACS Appl. Mater. Interfaces 2020, 12, 46455–46465.

    Article  CAS  Google Scholar 

  56. Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. High-Efficiency microwave attenuation of magnetic carbon nanoparticle-decorated tubular carbon nanofibers composites at an ultralow filling content. Adv. Electron. Mater. 2021, 7, 2100121.

    Article  CAS  Google Scholar 

  57. Wang, J. Q.; Cui, Y. H.; Wu, F.; Shah, T.; Ahmad, M.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Core—shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption. Carbon 2020, 165, 275–285.

    Article  CAS  Google Scholar 

  58. Wu, F.; Liu, P.; Wang, J. Q.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties. J. Colloid Interface Sci. 2020, 577, 242–255.

    Article  CAS  Google Scholar 

  59. Wang, J. Q.; Wu, F.; Cui, Y. H.; Chen, J. J.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Facile synthesis of tubular magnetic carbon nanofibers by hypercrosslinked polymer design for microwave adsorption. J. Am. Ceram. Soc. 2020, 103, 5706–5720.

    Article  CAS  Google Scholar 

  60. Cao, F. H.; Yan, F.; Xu, J.; Zhu, C. L.; Qi, L. H.; Li, C. Y.; Chen, Y. J. Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 2021, 174, 79–89.

    Article  CAS  Google Scholar 

  61. Xiang, Z.; Chu, C. Z.; Xie, H.; Xiang, T.; Zhou, S. B. Multifunctional thermoplastic polyurea based on the synergy of dynamic disulfide bonds and hydrogen bond cross-links. ACS Appl. Mater. Interfaces 2021, 13, 1463–1473.

    Article  CAS  Google Scholar 

  62. Jia, Y. J.; Zhang, L. Z.; Qin, M. L.; Li, Y.; Gu, S. J.; Guan, Q. B.; You, Z. W. Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics. Chem. Eng. J. 2022, 430, 133081.

    Article  CAS  Google Scholar 

  63. Martin, R.; Rekondo, A.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2014, 2, 5710–5715.

    Article  CAS  Google Scholar 

  64. Tu, J.; Xu, H.; Xiang, G. F.; Chen, L.; Li, P. Y.; Guo, X. D. Highly stretchable, high efficiency room temperature self-healing polyurethane adhesive based on hydrogen bonds-applicable to solid rocket propellants. Poly. Chem. 2021, 12, 4532–4545.

    Article  Google Scholar 

  65. Cheng, J. B.; Yuan, W. J.; Zhang, A. N.; Zhao, H. B.; Wang, Y. Z. Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. J. Mater. Chem. C 2020, 8, 13712–13722.

    Article  CAS  Google Scholar 

  66. He, Z. L.; Byun, J. H.; Zhou, G. H.; Park, B. J.; Kim, T. H.; Lee, S. B.; Yi, J. W.; Um, M. K.; Chou, T. W. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon 2019, 146, 701–708.

    Article  CAS  Google Scholar 

  67. He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.

    Article  CAS  Google Scholar 

  68. Wang, Z.; Liu, Y. T.; Zhang, D. J.; Zhang, K. M.; Gao, C. H.; Wu, Y. M. Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol. 2021, 216, 109042.

    Article  CAS  Google Scholar 

  69. Shi, Z.; Kang, J.; Zhang, L. Water-enabled room-temperature self-healing and recyclable polyurea materials with super-strong strength, toughness, and large stretchability. ACS Appl. Mater. Interfaces 2020, 12, 23484–23493.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFB3700101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuming Hu or Na Li.

Electronic Supplementary Material

12274_2022_4743_MOESM1_ESM.pdf

Multifunctional tubular carbon nanofibers/polyurethane electromagnetic wave absorber with room-temperature self-healing and recyclable performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Qiao, S., Cao, Y. et al. Multifunctional tubular carbon nanofibers/polyurethane electromagnetic wave absorber with room-temperature self-healing and recyclable performance. Nano Res. 16, 33–44 (2023). https://doi.org/10.1007/s12274-022-4743-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4743-2

Keywords

Navigation