Skip to main content
Log in

Giant quartic-phonon decay in PVD-grown α-MoO3 flakes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Elementary excitations, such as in-plane anisotropic phonons and phonon polaritons (PhPs), in α-MoO3 play key roles in its outstanding physical properties like high carrier mobility and ultralow phonon thermal conductivity (κp). Understanding the excitation mechanisms like phonon-phonon interactions is the most fundamental step to further applications. Here, we report on the systematic Raman investigations on phonon anisotropy and anharmonicity of representative Mo-O stretching vibration phonon modes (SVPMs) in physical vapor deposition (PVD)-grown α-MoO3 flakes. Polarizations of SVPMs verify the phonon anisotropy. The abnormal temperature dependence of SVPMs reveals that giant quartic-phonon decay dominates the phonon anharmonicity in α-MoO3. An ultrashort phonon lifetime of ∼ 0.34 ps gives evidence of theoretically predicted ultralow κp in α-MoO3. Our findings give deep insight into the phonon-phonon interactions in a-MoO3 and provide an indicator for its extreme thermal device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mater. 2012, 24, 5408–5427.

    Article  CAS  Google Scholar 

  2. Ahn, C.; Cavalleri, A.; Georges, A.; Ismail-Beigi, S.; Millis, A. J.; Triscone, J. M. Designing and controlling the properties of transition metal oxide quantum materials. Nat. Mater. 2021, 20, 1462–1468.

    Article  CAS  Google Scholar 

  3. Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.

    Article  Google Scholar 

  4. Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huang, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.

    Article  Google Scholar 

  5. Chen, F. M.; Liu, J. X.; Zheng, X. M.; Liu, L. H.; Xie, H. P.; Song, F.; Gao, Y. L.; Huang, H. Interfaces between MoOx and MoX2 (X = S, Se, and Te). Chin. Phys. B 2020, 29, 116802.

    Article  CAS  Google Scholar 

  6. Guo, Y. Z.; Robertson, J. Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 2014, 105, 222110.

    Article  Google Scholar 

  7. Zhang, W. B.; Qu, Q.; Lai, K. High-mobility transport anisotropy in few-layer MoO3 and its origin. ACS Appl. Mater. Interfaces 2017, 9, 1702–1709.

    Article  CAS  Google Scholar 

  8. Shi, J.; Wu, D.; Zheng, X. M.; Xie, D. D.; Song, F.; Zhang, X. A.; Jiang, J.; Yuan, X. M.; Gao, Y. L.; Huang, H. From MoO2@MoS2 core-shell nanorods to MoS2 nanobelts. Phys. Status Solidi (B) 2018, 255, 1800254.

    Article  Google Scholar 

  9. Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.

    Article  CAS  Google Scholar 

  10. Choi, D. K.; Kim, D. H.; Lee, C. M.; Hafeez, H.; Sarker, S.; Yang, J. S.; Chae, H. J.; Jeong, G. W.; Choi, D. H.; Kim, T. W. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun. 2021, 12, 2864.

    Article  CAS  Google Scholar 

  11. Arash, A.; Tawfik, S. A.; Spencer, M. J. S.; Kumar Jain, S.; Arash, S.; Mazumder, A.; Mayes, E.; Rahman, F.; Singh, M.; Bansal, V. et al. Electrically activated UV-A filters based on electrochromic MoO3−x. ACS Appl. Mater. Interfaces 2020, 12, 16997–17003.

    Article  CAS  Google Scholar 

  12. Duan, J.; Álvarez-Párez, G.; Tresguerres-Mata, A. I. F.; Taboada-Gutiárrez, J.; Voronin, K. V.; Bylinkin, A.; Chang, B.; Xiao, S.; Liu, S.; Edgar, J. H. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 2021, 12, 4325.

    Article  CAS  Google Scholar 

  13. Sun, H. L.; Zhang, H.; Jing, X. X.; Hu, J. P.; Shen, K. C.; Liang, Z. F.; Hu, J. B.; Tian, Q. W.; Luo, M.; Zhu, Z. Y. et al. One-step synthesis of centimeter-size alpha-MoO3 with single crystallinity. Appl. Surf. Sci. 2019, 476, 789–795.

    Article  CAS  Google Scholar 

  14. Molina-Mendoza, A. J.; Lado, J. L.; Island, J. O.; Niño, M. A.; Aballe, L.; Foerster, M.; Bruno, F. Y.; López-Moreno, A.; Vaquero-Garzon, L.; van der Zant, H. S. J. et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mater. 2016, 28, 4042–4051.

    Article  CAS  Google Scholar 

  15. Ali, S. A.; Irfan, A.; Mazumder, A.; Balendhran, S.; Ahmed, T.; Walia, S.; Ulhaq, A. Helicity-selective Raman scattering from inplane anisotropic a-MoO3. Appl. Phys. Lett. 2021, 119, 193104.

    Article  CAS  Google Scholar 

  16. Zheng, B. J.; Wang, Z. G.; Chen, Y. F.; Zhang, W. L.; Li, X. S. Centimeter-sized 2D a-MoO3 single crystal: Growth, Raman anisotropy, and optoelectronic properties. 2D Mater. 2018, 5, 045011.

    Article  CAS  Google Scholar 

  17. Gong, Y. N.; Zhao, Y. Y.; Zhou, Z. C.; Li, D. L.; Mao, H.; Bao, Q. L.; Zhang, Y. P.; Wang, G. P. Polarized Raman scattering of inplane anisotropic phonon modes in a-MoO3. Adv. Opt. Mater. 2022, 10, 2200038.

    Article  CAS  Google Scholar 

  18. Ma, W. L.; Alonso-González, P.; Li, S. J.; Nikitin, A. Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiárrez, J.; Amenabar, I.; Li, P. N.; Vález, S. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562.

    Article  CAS  Google Scholar 

  19. Chen, M. Y.; Lin, X.; Dinh, T. H.; Zheng, Z. R.; Shen, J. L.; Ma, Q.; Chen, H. S.; Jarillo-Herrero, P.; Dai, S. Y. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 2020, 19, 1307–1311.

    Article  CAS  Google Scholar 

  20. Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted a-MoO3 bilayers. Nature 2020, 582, 209–213.

    Article  CAS  Google Scholar 

  21. Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141.

    Article  Google Scholar 

  22. Negishi, H.; Negishi, S.; Kuroiwa, Y.; Sato, N.; Aoyagi, S. Anisotropic thermal expansion of layered MoO3 crystals. Phys. Rev. B 2004, 69, 064111.

    Article  Google Scholar 

  23. Tong, Z.; Dumitrică, T.; Frauenheim, T. Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett. 2021, 21, 4351–4356.

    Article  CAS  Google Scholar 

  24. Kaiser, F.; Schmidt, M.; Grin, Y.; Veremchuk, I. Molybdenum oxides MoOx: Spark-plasma synthesis and thermoelectric properties at elevated temperature. Chem. Mater. 2020, 32, 2025–2035.

    Article  CAS  Google Scholar 

  25. Xie, L.; Feng, J. H.; Li, R.; He, J. Q. First-principles study of anharmonic lattice dynamics in low thermal conductivity AgCrSe2: Evidence for a large resonant four-phonon scattering. Phys. Rev. Lett. 2020, 125, 245901.

    Article  CAS  Google Scholar 

  26. Yang, X. L.; Feng, T. L.; Li, J.; Ruan, X. L. Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature. Phys. Rev. B 2019, 100, 245203.

    Article  CAS  Google Scholar 

  27. Ravichandran, N. K.; Broido, D. Phonon-phonon interactions in strongly bonded solids: Selection rules and higher-order processes. Phys. Rev. X 2020, 10, 021063.

    CAS  Google Scholar 

  28. Sun, J.; Zhang, C. Z.; Yang, Z. H.; Shen, Y. H.; Hu, M.; Wang, Q. Four-phonon scattering effect and two-channel thermal transport in two-dimensional paraelectric SnSe. ACS Appl. Mater. Interfaces 2022, 14, 11493–11499.

    Article  CAS  Google Scholar 

  29. Syrbu, N. N.; Stamov, I. G. The superposition of the lattice radiation and reflectivity spectra of MoO3 and PbMoO4 crystals. Cryst. Res. Technol. 1994, 29, 133–148.

    Article  CAS  Google Scholar 

  30. Silveira, J. V.; Vieira, L. L.; Filho, J. M.; Sampaio, A. J. C.; Alves, O. L.; Souza Filho, A. G. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 2012, 43, 1407–1412.

    Article  CAS  Google Scholar 

  31. Liu, J. X.; Shi, J.; Wu, D.; Zheng, X. M.; Chen, F. M.; Xiao, J. T.; Li, Y. Z.; Song, F.; Gao, Y. L.; Huang, H. Epitaxial growth of <010>-oriented MoO2 nanorods on m-sapphire. Curr. Appl. Phys. 2020, 20, 1130–1135.

    Article  Google Scholar 

  32. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  CAS  Google Scholar 

  33. Zheng, X. M.; Wei, Y. H.; Liu, J. X.; Wang, S. T.; Shi, J.; Yang, H.; Peng, G.; Deng, C. Y.; Luo, W.; Zhao, Y. et al. A homogeneous p-n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469–13476.

    Article  CAS  Google Scholar 

  34. Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952–958.

    Article  CAS  Google Scholar 

  35. Zheng, Y. L.; Li, Y.; Tang, X.; Wang, W. L.; Li, G. Q. A self-powered high-performance UV photodetector based on core-shell GaN/MoO3−x nanorod array heterojunction. Adv. Opt. Mater. 2020, 8, 2000197.

    Article  CAS  Google Scholar 

  36. Liu, J. X.; Sun, K. L.; Zheng, X. M.; Wang, S. T.; Lian, S. C.; Deng, C. Y.; Xie, H. P.; Zhang, X. A.; Gao, Y. L.; Song, F. et al. Evolutions of morphology and electronic properties of few-layered MoS2 exposed to UVO. Results Phys. 2020, 19, 103634.

    Article  Google Scholar 

  37. Wu, D.; Qi, D. Y.; Liu, J. D.; Wang, Z. X.; Hao, Q. Y.; Hong, G.; Liu, F.; Ouyang, F. P.; Zhang, W. J. Growth of centimeter-scale single crystal MoO3 ribbons for high performance ultraviolet photodetectors. Appl. Phys. Lett. 2021, 118, 243101.

    Article  CAS  Google Scholar 

  38. Liu, D.; Lei, W. W.; Hao, J.; Liu, D. D.; Liu, B. B.; Wang, X.; Chen, X. H.; Cui, Q. L.; Zou, G. T.; Liu, J. et al. High-pressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513.

    Article  Google Scholar 

  39. Py, M. A.; Maschke, K. Intra- and interlayer contributions to the lattice vibrations in MoO3. Physica B+C 1981, 105, 370–374.

    Article  CAS  Google Scholar 

  40. Yu, S. J.; Jiang, Y.; Roberts, J. A.; Huber, M. A.; Yao, H. L.; Shi, X. J.; Bechtel, H. A.; Gilbert Corder, S. N.; Heinz, T. F.; Zheng, X. L. et al. Ultrahigh-quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons. ACS Nano 2022, 16, 3027–3035.

    Article  CAS  Google Scholar 

  41. Wen, M. Q.; Chen, X. X.; Zheng, Z. B.; Deng, S. Z.; Li, Z. B.; Wang, W. L.; Chen, H. J. In-plane anisotropic Raman spectroscopy of van der Waals a-MoO3. J. Phys. Chem. C 2021, 125, 765–773.

    Article  CAS  Google Scholar 

  42. Phaneuf-L’Heureux, A. L.; Favron, A.; Germain, J. F.; Lavoie, P.; Desjardins, P.; Leonelli, R.; Martel, R.; Francoeur, S. Polarization-resolved Raman study of bulk-like and Davydov-induced vibrational modes of exfoliated black phosphorus. Nano Lett. 2016, 16, 7761–7767.

    Article  Google Scholar 

  43. Porezag, D.; Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830–7836.

    Article  CAS  Google Scholar 

  44. Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423–482.

    Article  CAS  Google Scholar 

  45. Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.

    Article  CAS  Google Scholar 

  46. Wang, Y. S.; Chen, F. M.; Guo, X.; Liu, J. X.; Jiang, J. J.; Zheng, X. M.; Wang, Z. H.; Al-Makeen, M. M.; Ouyang, F. P.; Xia, Q. L. et al. In-plane phonon anisotropy and anharmonicity in exfoliated natural black arsenic. J. Phys. Chem. Lett. 2021, 12, 10753–10760.

    Article  CAS  Google Scholar 

  47. Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601–12607.

    Article  CAS  Google Scholar 

  48. Liu, F.; Parajuli, P.; Rao, R.; Wei, P. C.; Karunarathne, A.; Bhattacharya, S.; Podila, R.; He, J.; Maruyama, B.; Priyadarshan, G. et al. Phonon anharmonicity in single-crystalline SnSe. Phys. Rev. B 2018, 98, 224309.

    Article  CAS  Google Scholar 

  49. Zhu, S. Q.; Zheng, W. Temperature-dependent phonon shifts in van der Waals crystals. J. Phys. Chem. Lett. 2021, 12, 5261–5270.

    Article  CAS  Google Scholar 

  50. Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 2007, 99, 176802.

    Article  Google Scholar 

  51. Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934.

    Article  CAS  Google Scholar 

  52. Samara, G. A.; Peercy, P. S. Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile). Phys. Rev. B 1973, 7, 1131–1148.

    Article  CAS  Google Scholar 

  53. Tristant, D.; Cupo, A.; Ling, X.; Meunier, V. Phonon anharmonicity in few-layer black phosphorus. ACS Nano 2019, 13, 10456–10468.

    Article  CAS  Google Scholar 

  54. Postmus, C.; Ferraro, J. R.; Mitra, S. S. Pressure dependence of infrared eigenfrequencies of KCl and KBr. Phys. Rev. 1968, 174, 983–987.

    Article  CAS  Google Scholar 

  55. Popuri, S. R.; Pollet, M.; Decourt, R.; Viciu, M. L.; Bos, J. W. G. Evidence for hard and soft substructures in thermoelectric SnSe. Appl. Phys. Lett. 2017, 110, 253903.

    Article  Google Scholar 

  56. Julien, C.; Yebka, B.; Nazri, G. A. Temperature dependence of the vibrational modes of MoO3. Mater. Sci. Eng.: B 1996, 38, 65–71.

    Article  Google Scholar 

  57. Guo, X.; Tian, Q. W.; Wang, Y. S.; Liu, J. X.; Jia, G. P.; Dou, W. D.; Song, F.; Zhang, L. J.; Qin, Z. H.; Huang, H. Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 2022, 190, 312–318.

    Article  CAS  Google Scholar 

  58. Wertheim, G. K.; Butler, M. A.; West, K. W.; Buchanan, D. N. E. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974, 45, 1369–1371.

    Article  Google Scholar 

  59. Cuscó, R.; Artús, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B 2018, 97, 155435.

    Article  Google Scholar 

  60. Liu, F. J.; Hu, L. Y.; Karakaya, M.; Puneet, P.; Rao, R.; Podila, R.; Bhattacharya, S.; Rao, A. M. A micro-Raman study of exfoliated few-layered n-type Bi2Te2.7Se0.3. Sci. Rep. 2017, 7, 16535.

    Article  Google Scholar 

  61. Lu, Y.; Sun, T.; Zhang, D. B. Lattice anharmonicity, phonon dispersion, and thermal conductivity of PbTe studied by the phonon quasiparticle approach. Phys. Rev. B 2018, 97, 174304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (NSFC, No. 11874427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, X., You, S. et al. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano Res. 16, 1115–1122 (2023). https://doi.org/10.1007/s12274-022-4734-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4734-3

Keywords

Navigation