Skip to main content
Log in

Excitation orthogonalized upconversion nanoprobe for instant visual detection of trinitrotoluene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Excitation-emission orthogonalized luminescent upconversion nanoparticles (OUCNPs), which can respond to changes in external stimuli accordingly, show great promise in many intelligent applications. However, the construction of such materials mostly relies on the selective absorption of Nd3+ and Yb3+ at different wavelengths and the long-range energy migration between the layers, resulting in complex structures and limited orthogonal luminescence intensity. Herein, we developed a relatively simple structure of OUCNPs (β-NaErF4@NaLuF4@NaYF4:20%Yb, 2%Er@NaLuF4), where the fluorescence emission switches from red to green when the excitation wavelength is shifted from 808 to 980 nm. This structure exhibits high-quality, independent, and non-interfering orthogonal luminescence properties without Nd3+ sensitization and long-range energy migration. As a proof of concept, we demonstrate the application of the designed OUCNPs in anti-counterfeiting. We also prepared OUCNPs@PEI (PEI = polyethylenimine) self-referencing fluorescent probes to enable quantitative analysis of trinitrotoluene (TNT) in solution with a detection limit of 3.04 µM. The probes can be made into test strips for portable on-site visual detection of TNT, and can also be used to image latent fingerprints and detect explosive residues in fingerprints simultaneously. The concept proposed in this work can be extended to the visual detection of a larger range of organic and biological molecules, and is highly promising for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, L.; Yang, K.; Zhang, S.; Shao, M. W.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.

    Article  CAS  Google Scholar 

  2. Hong, A. R.; Kyhm, J. H.; Kang, G. M.; Jang, H. S. Orthogonal R/G/B upconversion luminescence-based full-color tunable upconversion nanophosphors for transparent displays. Nano Lett. 2021, 21, 4838–4844.

    Article  CAS  Google Scholar 

  3. Wang, M.; Li, M.; Yang, M. Y.; Zhang, X. M.; Yu, A. Y.; Zhu, Y.; Qiu, P. H.; Mao, C. B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4: Yb, Er upconversion nanoparticles in a dry powder state. Nano Res. 2015, 8, 1800–1810.

    Article  CAS  Google Scholar 

  4. Zheng, K. Z.; Han, S. Y.; Zeng, X.; Wu, Y. M.; Song, S. Y.; Zhang, H. J.; Liu, X. G. Rewritable optical memory through high-registry orthogonal upconversion. Adv. Mater. 2018, 30, 1801726.

    Article  Google Scholar 

  5. Zhuang, Y. X.; Chen, D. R.; Chen, W. J.; Zhang, W. X.; Su, X.; Deng, R. R.; An, Z. F.; Chen, H. M.; Xie, R. J. X-ray-charged bright persistent luminescence in NaYF4: Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light Sci. Appl. 2021, 10, 132.

    Article  CAS  Google Scholar 

  6. Song, Y. P.; Lu, M. Y.; Mandl, G. A.; Xie, Y.; Sun, G. T.; Chen, J. B.; Liu, X.; Capobianco, J. A.; Sun, L. N. Energy migration control of multimodal emissions in an Er3+-doped nanostructure for information encryption and deep-learning decoding. Angew. Chem., Int. Ed. 2021, 60, 23790–23796.

    Article  CAS  Google Scholar 

  7. Ankenbruck, N.; Courtney, T.; Naro, Y.; Deiters, A. Optochemical control of biological processes in cells and animals. Angew. Chem., Int. Ed. 2018, 57, 2768–2798.

    Article  CAS  Google Scholar 

  8. Zuo, M. Z.; Qian, W. R.; Xu, Z. Q.; Shao, W.; Hu, X. Y.; Zhang, D. M.; Jiang, J. L.; Sun, X. Q.; Wang, L. Y. Multiresponsive supramolecular theranostic nanoplatform based on Pillar[5]arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery. Small 2018, 14, 1801942.

    Article  Google Scholar 

  9. Wang, Z.; Qiu, X. E.; Xi, W. S.; Tang, M.; Liu, J. L.; Jiang, H.; Sun, L. N. Tailored upconversion nanomaterial: A hybrid nano fluorescent sensor for evaluating efficacy of lactate dehydrogenase inhibitors as anticancer drugs. Sens. Actuator B Chem. 2021, 345, 130417.

    Article  CAS  Google Scholar 

  10. Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. 2013, 7, 676–688.

    Article  CAS  Google Scholar 

  11. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

    Article  CAS  Google Scholar 

  12. Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

    Article  CAS  Google Scholar 

  13. Carling, C. J.; Boyer, J. C.; Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 2009, 131, 10838–10839.

    Article  CAS  Google Scholar 

  14. Di, Z. H.; Liu, B.; Zhao, J.; Gu, Z. J.; Zhao, Y. L.; Li, L. L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Sci. Adv. 2020, 6, eaba9381.

    Article  CAS  Google Scholar 

  15. Jayakumar, M. K. G.; Idris, N. M.; Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl. Acad. Sci. USA 2012, 109, 8483–8488.

    Article  CAS  Google Scholar 

  16. Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    Article  CAS  Google Scholar 

  17. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Article  CAS  Google Scholar 

  18. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

    Article  CAS  Google Scholar 

  19. Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755.

    Article  Google Scholar 

  20. Zhou, J.; Fan, X. X.; Wu, D.; Liu, J.; Zhang, Y. H.; Ye, Z. K.; Xue, D. W.; He, M. B.; Zhu, L.; Feng, Z. et al. Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. Light Sci. Appl. 2021, 10, 182.

    Article  CAS  Google Scholar 

  21. Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.

    Article  Google Scholar 

  22. Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

    Article  CAS  Google Scholar 

  23. DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 2014, 832, 1–33.

    Article  CAS  Google Scholar 

  24. Dong, H.; Sun, L. D.; Feng, W.; Gu, Y. Y.; Li, F. Y.; Yan, C. H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano. 2017, 11, 3289–3297.

    Article  CAS  Google Scholar 

  25. Lai, J. P.; Zhang, Y. X.; Pasquale, N.; Lee, K. B. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching. Angew. Chem., Int. Ed. 2014, 53, 14419–14423.

    Article  CAS  Google Scholar 

  26. Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed. 2016, 55, 2464–2469.

    Article  CAS  Google Scholar 

  27. Tang, M.; Zhu, X. H.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. M.; Mei, Q. S.; Zhang, J.; Wu, M. H.; Liu, J. L.; Zhang, Y. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano. 2019, 13, 10405–10418.

    Article  CAS  Google Scholar 

  28. Zhang, Z.; Jayakumar, M. K. G.; Shikha, S.; Zhang, Y.; Zheng, X.; Zhang, Y. Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 12549–12556.

    Article  CAS  Google Scholar 

  29. Zuo, J.; Tu, L. P.; Li, Q. Q.; Feng, Y. S.; Que, I.; Zhang, Y. L.; Liu, X. M.; Xue, B.; Cruz, L. J.; Chang, Y. L. et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “Off-On” therapy. ACS Nano 2018, 12, 3217–3225.

    Article  CAS  Google Scholar 

  30. Wang, L.; Dong, H.; Li, Y. N.; Liu, R.; Wang, Y. F.; Bisoyi, H. K.; Sun, L. D.; Yan, C. H.; Li, Q. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater. 2015, 27, 2065–2069.

    Article  CAS  Google Scholar 

  31. Zuo, J.; Li, Q. Q.; Xue, B.; Li, C. X.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Zhang, H.; Kong, X. G. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941–7946.

    Article  CAS  Google Scholar 

  32. Johnson, N. J. J.; Korinek, A.; Dong, C. H.; Van Veggel, F. C. J. M. Self-focusing by Ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 2012, 134, 11068–11071.

    Article  CAS  Google Scholar 

  33. Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem., Int. Ed. 2017, 56, 7605–7609.

    Article  CAS  Google Scholar 

  34. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

    Article  CAS  Google Scholar 

  35. Huang, J. S.; Yan, L.; Liu, S. B.; Song, N.; Zhang, Q. Y.; Zhou, B. Dynamic control of orthogonal upconversion in migratory core-shell nanostructure toward information security. Adv. Funct. Mater. 2021, 31, 2009796.

    Article  CAS  Google Scholar 

  36. Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899.

    Article  Google Scholar 

  37. Zhou, B.; Yan, L.; Huang, J. S.; Liu, X. L.; Tao, L. L.; Zhang, Q. Y. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics 2020, 14, 760–766.

    Article  CAS  Google Scholar 

  38. Zhao, W. C.; Yang, X.; Feng, A. X.; Yan, X. L.; Wang, L. Q.; Liang, T.; Liu, J.; Ma, H. S.; Zhou, Y. Y. Distribution and migration characteristics of dinitrotoluene sulfonates (DNTs) in typical TNT production sites: Effects and health risk assessment. J. Environ. Manage. 2021, 287, 112342.

    Article  CAS  Google Scholar 

  39. Hu, Z. Y.; Jiang, N.; Zhang, Y. Q.; Xia, Y. Q.; Zhou, C. B. Propagation of shock wave and structure dynamic response of explosion in a subway station: A case study of Wuhan subway station. J. Vibroeng. 2020, 22, 1453–1469.

    Article  Google Scholar 

  40. Steinfeld, J. I.; Wormhoudt, J. Explosives detection: A challenge for physical chemistry. Ann. Rev. Phys. Chem. 1998, 49, 203–232.

    Article  CAS  Google Scholar 

  41. Yinon, J. Field detection and monitoring of explosives. TrAC Trends Anal. Chem. 2002, 21, 292–301.

    Article  CAS  Google Scholar 

  42. Jurado-Campos, N.; Chiluwal, U.; Eiceman, G. A. Improved selectivity for the determination of trinitrotoluene through reactive stage tandem ion mobility spectrometry and a quantitative measure of source-based suppression of ionization. Talanta 2021, 226, 121944.

    Article  CAS  Google Scholar 

  43. Baldin, M. N.; Bobrovnikov, S. M.; Vorozhtsov, A. B.; Gorlov, E. V.; Gruznov, V. M.; Zharkov, V. I.; Panchenko, Y. N.; Pryamov, M. V.; Sakovich, G. V. Effectiveness of combined laser and gas chromatographic remote detection of traces of explosives. Atmos. Ocean. Opt. 2019, 32, 227–233.

    Article  CAS  Google Scholar 

  44. Moazzen, S.; Zarei, A. R.; Mardi, K. Green sample preparation based on directly suspended droplet microextraction using deep eutectic solvent for ultra-trace quantification of nitroaromatic explosives by high performance liquid chromatography. J. Anal. Chem. 2021, 76, 1296–1304.

    Article  CAS  Google Scholar 

  45. Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 2011, 133, 8424–8427.

    Article  CAS  Google Scholar 

  46. Lei, Z. D.; Ling, X.; Mei, Q. S.; Fu, S.; Zhang, J.; Zhang, Y. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles. Adv. Mater. 2020, 32, 1906225.

    Article  CAS  Google Scholar 

  47. Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.

    Article  CAS  Google Scholar 

  48. Feng, Y. S.; Li, Z.; Li, Q. Q.; Yuan, J.; Tu, L. P.; Ning, L. X.; Zhang, H. Internal OH induced cascade quenching of upconversion luminescence in NaYF4: Yb/Er nanocrystals. Light Sci. Appl. 2021, 10, 105.

    Article  CAS  Google Scholar 

  49. Lai, F. L.; Wang, Y.; Li, D. D.; Sun, X. S.; Peng, J.; Zhang, X. D.; Tian, Y. P.; Liu, T. X. Visible light-driven superoxide generation by conjugated polymers for organic synthesis. Nano Res. 2018, 11, 1099–1108.

    Article  CAS  Google Scholar 

  50. Wang, M. Latent fingermarks light up: Facile development of latent fingermarks using NIR-responsive upconversion fluorescent nanocrystals. RSC Adv. 2016, 6, 36264–36268.

    Article  CAS  Google Scholar 

  51. Wang, M.; Li, M.; Yu, A. Y.; Zhu, Y.; Yang, M. Y.; Mao, C. B. Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences. Adv. Funct. Mater. 2017, 27, 1606243.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61875191, U2003127, 62171194, 11874355, and 21902057) and Natural Science Foundation of Jilin Province (No. 20210101380JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomin Liu or Geyu Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhao, X., Xu, X. et al. Excitation orthogonalized upconversion nanoprobe for instant visual detection of trinitrotoluene. Nano Res. 16, 1491–1499 (2023). https://doi.org/10.1007/s12274-022-4693-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4693-8

Keywords

Navigation