Skip to main content
Log in

Biomimetic high-flux proton pump constructed with asymmetric polymeric carbon nitride membrane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biological proton pumps ferry protons in an active manner and have a high flux (a few to 10 protons/(s·nm2)). Integrating these features in an artificial membrane may open the way for a wide range of applications but it remains challenging. In this work, we employed a structural engineering strategy to construct an asymmetric photonic polymeric carbon nitride (C3N4) membrane that exhibited photo-driven high flux proton pumping performance. The ion transport path through the membrane is reminiscent of that in the high-flux asymmetric biological ion channel. In addition, it has a photonic structure that mimics the mosquito compound eyes with improved light adsorption. Finally, the asymmetric structure constitutes an isotype (n−n) heterojunction that enhances the separation of the light-induced electron-hole pairs. As a result, the membrane shows a flux of 89 µA/cm2 under 100 mW/cm2 white light illumination (approximately one sun), the highest ever reported. This translates to a pumping rate of ∼ 6 proton/(s·nm2), comparable to the biological counterpart. This work highlights the potential of multi-level structural engineering to construct high-performance bionic devices, and may find applications in solar energy harvesting and solar powered membrane process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pelley, J. W. 7-citric acid cycle, electron transport chain, and oxidative phosphorylation. In Elsevier’s Integrated Biochemistry; Pelley, J. W., Ed.; Mosby: Elsevier, 2007; pp 55–63.

  2. Kamel, K. S.; Halperin, M. L. Chapter 1—Principles of acid-base physiology. In Fluid, Electrolyte and Acid-Base Physiology, 5th ed.; Kamel, K. S.; Halperin, M. L., Eds.; Philadelphia: Elsevier, 2017; pp 3–32.

    Chapter  Google Scholar 

  3. Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; Nair, R. R.; Geim, A. K.; Gopinadhan, K. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511–513.

    Article  CAS  Google Scholar 

  4. Acar, E. T.; Buchsbaum, S. F.; Combs, C.; Fornasiero, F.; Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 2019, 5, eaav2568.

    Article  CAS  Google Scholar 

  5. Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622–639.

    Article  CAS  Google Scholar 

  6. Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

    Article  CAS  Google Scholar 

  7. Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

    Article  CAS  Google Scholar 

  8. Xiao, K.; Chen, L.; Jiang, L.; Antonietti, M. Carbon nitride nanotube for ion transport based photo-rechargeable electric energy storage. Nano Energy 2020, 67, 104230.

    Article  CAS  Google Scholar 

  9. Epsztein, R.; DuChanois, R. M.; Ritt, C. L.; Noy, A.; Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 2020, 15, 426–436.

    Article  CAS  Google Scholar 

  10. Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.

    Article  Google Scholar 

  11. Lu, J.; Zhang, H. C.; Hou, J.; Li, X. Y.; Hu, X. Y.; Hu, Y. X.; Easton, C. D.; Li, Q. Y.; Sun, C. H.; Thornton, A. W. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 2020, 19, 767–774.

    Article  CAS  Google Scholar 

  12. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

    Article  Google Scholar 

  13. Wang, L. L.; Wen, Q.; Jia, P.; Jia, M. J.; Lu, D. N.; Sun, X. M.; Jiang, L.; Guo, W. Light-driven active proton transport through photoacid- and photobase-doped Janus graphene oxide membranes. Adv. Mater. 2019, 31, 1903029.

    Article  Google Scholar 

  14. Quan, D.; Ji, D. Y.; Wen, Q.; Du, L. H.; Wang, L. L.; Jia, P.; Liu, D.; Ding, L. P.; Dong, H. L.; Lu, D. N. et al. Laterally heterogeneous 2D layered materials as an artificial light-harvesting proton pump. Adv. Funct. Mater. 2020, 30, 2001549.

    Article  CAS  Google Scholar 

  15. Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.

    Article  CAS  Google Scholar 

  16. Jiang, Y. N.; Ma, W. J.; Qiao, Y. J.; Xue, Y. F.; Lu, J. H.; Gao, J.; Liu, N. N.; Wu, F.; Yu, P.; Jiang, L. et al. Metal-organic framework membrane nanopores as biomimetic photoresponsive ion channels and photodriven ion pumps. Angew. Chem., Int. Ed. 2020, 59, 12795–12799.

    Article  CAS  Google Scholar 

  17. Yang, J. L.; Liu, P. C.; He, X.; Hou, J. J.; Feng, Y. P.; Huang, Z. W.; Yu, L.; Li, L. S.; Tang, Z. Y. Photodriven active ion transport through a Janus microporous membrane. Angew. Chem., Int. Ed. 2020, 59, 6244–6248.

    Article  CAS  Google Scholar 

  18. Zhang, Z.; Kong, X. Y.; Xie, G. H.; Li, P.; Xiao, K.; Wen, L. P.; Jiang, L. “Uphill” cation transport: A bioinspired photo-driven ion pump. Sci. Adv. 2016, 2, e1600689.

    Article  Google Scholar 

  19. Wen, L. P.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 2010, 20, 2636–2642.

    Article  CAS  Google Scholar 

  20. Jia, P.; Wang, L. L.; Zhang, Y. H.; Yang, Y. T.; Jin, X. Y.; Zhou, M.; Quan, D.; Jia, M. J.; Cao, L. X.; Long, R. et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 2021, 33, 2007529.

    Article  CAS  Google Scholar 

  21. Rao, S. Y.; Lu, S. F.; Guo, Z. B.; Li, Y.; Chen, D. L.; Xiang, Y. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 2014, 26, 5846–5850.

    Article  CAS  Google Scholar 

  22. Lv, Y. J.; Yang, N. N.; Li, S. H.; Lu, S. F.; Xiang, Y. A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy 2019, 66, 104129.

    Article  CAS  Google Scholar 

  23. Zhang, Q. Q.; Liu, Z. Y.; Zhai, J. Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chem. Commun. 2015, 51, 12286–12289.

    Article  CAS  Google Scholar 

  24. Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

    Article  Google Scholar 

  25. Liu, P.; Zhou, T.; Teng, Y. F.; Fu, L.; Hu, Y. H.; Lin, X. B.; Kong, X. Y.; Jiang, L.; Wen, L. P. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS Chem. 2021, 3, 1325–1335.

    Article  CAS  Google Scholar 

  26. Liu, P.; Zhou, T.; Yang, L. S.; Zhu, C. C.; Teng, Y. F.; Kong, X. Y.; Wen, L. P. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14, 4400–4409.

    Article  CAS  Google Scholar 

  27. Zhao, X. L.; Lu, C. X.; Yang, L. S.; Chen, W. P.; Xin, W. W.; Kong, X. Y.; Fu, Q.; Wen, L. P.; Qiao, G.; Jiang, L. Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 2021, 81, 105657.

    Article  CAS  Google Scholar 

  28. Chen, L.; Tu, B.; Lu, X. B.; Li, F.; Jiang, L.; Antonietti, M.; Xiao, K. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat. Commun. 2021, 12, 4650.

    Article  CAS  Google Scholar 

  29. Sze, H.; Li, X. H.; Palmgren, M. G. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 1999, 11, 677–689.

    CAS  Google Scholar 

  30. Abe, K.; Irie, K.; Nakanishi, H.; Suzuki, H.; Fujiyoshi, Y. Crystal structures of the gastric proton pump. Nature 2018, 556, 214–218.

    Article  CAS  Google Scholar 

  31. Focht, D.; Croll, T. I.; Pedersen, B. P.; Nissen, P. Improved model of proton pump crystal structure obtained by interactive molecular dynamics flexible fitting expands the mechanistic model for proton translocation in P-type ATPases. Front. Physiol. 2017, 8, 202.

    Article  Google Scholar 

  32. Kühlbrandt, W.; Zeelen, J.; Dietrich, J. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 2002, 297, 1692–1696.

    Article  Google Scholar 

  33. Hille, B. Ion Channels of Excitable Membranes; Sinauer Associates: Sunderland, 2001.

    Google Scholar 

  34. Lee, L. P.; Szema, R. Inspirations from biological optics for advanced photonic systems. Science 2005, 310, 1148–1150.

    Article  CAS  Google Scholar 

  35. Li, J.; Wang, W. J.; Mei, X. S.; Hou, D. X.; Pan, A. F.; Liu, B.; Cui, J. L. Fabrication of artificial compound eye with controllable field of view and improved imaging. ACS Appl. Mater. Interfaces 2020, 12, 8870–8878.

    Article  CAS  Google Scholar 

  36. Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.

    Article  CAS  Google Scholar 

  37. Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

    Article  CAS  Google Scholar 

  38. Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 2016, 15, 1084–1089.

    Article  CAS  Google Scholar 

  39. Liu, J.; Wang, H. Q.; Chen, Z. P.; Moehwald, H.; Fiechter, S.; Van De Krol, R.; Wen, L. P.; Jiang, L.; Antonietti, M. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 2015, 27, 712–718.

    Article  CAS  Google Scholar 

  40. Jia, C. C.; Yang, L. J.; Zhang, Y. Y.; Zhang, X.; Xiao, K.; Xu, J. S.; Liu, J. Graphitic carbon nitride films: Emerging paradigm for versatile applications. ACS Appl. Mater. Interfaces 2020, 12, 53571–53591.

    Article  CAS  Google Scholar 

  41. Zou, Y. J.; Xiao, K.; Qin, Q.; Shi, J. W.; Heil, T.; Markushyna, Y.; Jiang, L.; Antonietti, M.; Savateev, A. Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano 2021, 15, 6551–6561.

    Article  CAS  Google Scholar 

  42. Jia, C. C.; Hu, W. J.; Zhang, Y. Y.; Teng, C.; Chen, Z. P.; Liu, J. Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorg. Chem. Front. 2020, 7, 2434–2442.

    Article  CAS  Google Scholar 

  43. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  Google Scholar 

  44. Jia, F. H.; Zhang, Y. Z.; Hu, W. J.; Lv, M.; Jia, C. C.; Liu, J. In-situ construction of superhydrophilic g-C3N4 film by vapor-assisted confined deposition for photocatalysis. Front. Mater. 2019, 6, 52.

    Article  Google Scholar 

  45. Zhao, Y. C.; Liu, Z.; Chu, W. G.; Song, L.; Zhang, Z. X.; Yu, D. L.; Tian, Y. J.; Xie, S. S.; Sun, L. F. Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor. Adv. Mat. 2008, 20, 1777–1781.

    Article  CAS  Google Scholar 

  46. Liu, J.; Huang, J. H.; Dontosova, D.; Antonietti, M. Facile synthesis of carbon nitride micro-/nanoclusters with photocatalytic activity for hydrogen evolution. RSC Adv. 2013, 3, 22988–22993.

    Article  CAS  Google Scholar 

  47. Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p−n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.

    Article  CAS  Google Scholar 

  48. Chang, S. L.; Wu, B. R.; Yang, P. H.; Lin, M. F. Curvature effects on electronic properties of armchair graphenenanoribbons without passivation. Phys. Chem. Chem. Phys. 2012, 14, 16409–16414.

    Article  CAS  Google Scholar 

  49. Batista, F.Jr.; Chaves, A.; Da Costa, D. R.; Farias, G. A. Curvature effects on the electronic and transport properties of semiconductor films. Phys. E 2018, 99, 304–309.

    Article  CAS  Google Scholar 

  50. Yan, W.; He, W. Y.; Chu, Z. D.; Liu, M. X.; Meng, L.; Dou, R. F.; Zhang, Y. F.; Liu, Z. F.; Nie, J. C.; He, L. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 2013, 4, 2159.

    Article  Google Scholar 

  51. Gupta, A. K.; Nisoli, C.; Lammert, P. E.; Crespi, V. H.; Eklund, P. C. Curvature-induced D-band Raman scattering in folded graphene. J. Phys.:Condens. Matter 2010, 22, 334205.

    Google Scholar 

  52. Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

    Article  Google Scholar 

  53. Zhu, J.; Fan, F. T.; Chen, R. T.; An, H. Y.; Feng, Z. C.; Li, C. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem., Int. Ed. 2015, 54, 9111–9114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. L. and J. G. acknowledge Prof. Wei Lin and Xu Cai of Fuzhou University for helpful discussions. This work was financially supported by the Natural Science Foundation of Shandong Province (Nos. ZR2019ZD47, ZR2019JQ05, ZR2018MB018, and ZR202103010934), the Key R&D Projects of Shandong Province (No. 2022CXGC010302), the Education Department of Shandong Province (No. 2019KJC006), the Shandong Energy Institute (No. SEI202124), and the National Natural Science Foundation of China (Nos. 22175104 and 21802080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Jun Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pan, S., Zhang, Y. et al. Biomimetic high-flux proton pump constructed with asymmetric polymeric carbon nitride membrane. Nano Res. 16, 18–24 (2023). https://doi.org/10.1007/s12274-022-4659-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4659-x

Keywords

Navigation