Skip to main content
Log in

Induced circularly polarized luminescence of perovskite nanocrystals by self-assembly chiral gel

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskites nanocrystals (NCs) with circularly polarized light (CPL) activity have drawn much attention due to the fascinating photoelectric properties of perovskite NCs as well as the abundant applications of CPL in three-dimensional (3D) displays, nonlinear optics, spintronics devices, CPL lasers, and so on. Herein, bio-inspired by life, we designed and synthesized a simple amphiphilic molecule which could self-assemble into chiral gel with helix chirality in non-polar solvents. Through co-assembly of the CsPbX3 NCs with the chiral gel, CPL at the first excitation band of CsPbX3 NCs is induced in the whole visible spectrum with a maximum glum of 8.2 × 10−3. The induced CPL arises from the selective CPL-absorption of the CsPbX3 NCs’ luminesce by the chiral gel, which provides a facile and practical approach to induce CPL in perovskite NCs and other nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci 1997, 27, 305–379.

    Article  CAS  Google Scholar 

  2. Maki, J. J.; Verbiest, T.; Kauranen, M.; Elshocht, S. V.; Persoons, A. Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces. J. Chem. Phys. 1996, 105, 767–772.

    Article  CAS  Google Scholar 

  3. Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508.

    Article  Google Scholar 

  4. Jiménez, J.; Cerdán, L.; Moreno, F.; Maroto, B. L.; García-Moreno, I.; Lunkley, J. L.; Muller, G.; de la Moya, S. Chiral organic dyes endowed with circularly polarized laser emission. J. Phys. Chem. C 2017, 121, 5287–5292.

    Article  Google Scholar 

  5. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

    Article  CAS  Google Scholar 

  6. Kim, Y. H.; Zhai, Y. X.; Gaulding, E. A.; Habisreutinger, S. N.; Moot, T.; Rosales, B. A.; Lu, H. P.; Hazarika, A.; Brunecky, R.; Wheeler, L. M. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic-inorganic hybrid perovskite nanocrystals. ACS Nano 2020, 14, 8816–8825.

    Article  CAS  Google Scholar 

  7. Shi, Y. H.; Duan, P. F.; Huo, S. W.; Li, Y. G.; Liu, M. H. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 2018, 30, 1705011.

    Article  Google Scholar 

  8. Yang, X. F.; Zhou, M. H.; Wang, Y. F.; Duan, P. F. Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap. Adv. Mater. 2020, 32, 2000820.

    Article  CAS  Google Scholar 

  9. Zhao, B.; Gao, X. B.; Pan, K.; Deng, J. P. Chiral helical polymer/perovskite hybrid nanofibers with intense circularly polarized luminescence. ACS Nano. 2021, 15, 7463–7471.

    Article  CAS  Google Scholar 

  10. Zhang, C.; Li, Z. S.; Dong, X. Y.; Niu, Y. Y.; Zang, S. Q. Multiple responsive CPL switches in an enantiomeric pair of perovskite confined in lanthanide MOFs. Adv. Mater. 2022, 34, 2109496.

    Article  CAS  Google Scholar 

  11. Chen, W. J.; Zhang, S.; Zhou, M. H.; Zhao, T. H.; Qin, X. J.; Liu, X. F.; Liu, M. H.; Duan, P. F. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 3290–3295.

    Article  CAS  Google Scholar 

  12. Dai, Q. Q.; Li, H.; Sini, G.; Bredas, J. L. Evolution of the nature of excitons and electronic couplings in hybrid 2D perovskites as a function of organic cation π-conjugation. Adv. Funct. Mater. 2022, 32, 2108662.

    Article  CAS  Google Scholar 

  13. Liu, P. Z.; Chen, W.; Okazaki, Y.; Battie, Y.; Brocard, L.; Decossas, M.; Pouget, E.; Müller-Buschbaum, P.; Kauffmann, B.; Pathan, S. et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 2020, 20, 8453–8460.

    Article  CAS  Google Scholar 

  14. Smith, D. K. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev. 2009, 38, 684–694.

    Article  CAS  Google Scholar 

  15. Goto, T.; Okazaki, Y.; Ueki, M.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Ihara, H. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew. Chem., Int. Ed. 2017, 56, 2989–2993.

    Article  CAS  Google Scholar 

  16. Yang, L.; Huang, J. X.; Qin, M. G.; Ma, X. Y.; Dou, X. Y.; Feng, C. L. Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. Nanoscale 2020, 12, 6233–6238.

    Article  CAS  Google Scholar 

  17. Li, P. Y.; Lü, B. Z.; Han, D. X.; Duan, P. F.; Liu, M. H.; Yin, M. Z. Stoichiometry-controlled inversion of circularly polarized luminescence in co-assembly of chiral gelators with an achiral tetraphenylethylene derivative. Chem. Commun. 2019, 55, 2194–2197.

    Article  CAS  Google Scholar 

  18. Yang, D.; Duan, P. F; Zhang, L.; Liu, M. H. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 2017, 8, 15727.

    Article  CAS  Google Scholar 

  19. Han, J. L.; You, J.; Li, X. G.; Duan, P. F.; Liu, M. H. Full-color tunable circularly polarized luminescent nanoassemblies of achiral AIEgens in confined chiral nanotubes. Adv. Mater. 2017, 29, 1606503.

    Article  Google Scholar 

  20. Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright, A. C. Two-component dendritic gels: Easily tunable materials. J. Am. Chem. Soc. 2003, 125, 9010–9011.

    Article  CAS  Google Scholar 

  21. Pal, A.; Ghosh, Y. K.; Bhattacharya, S. Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids. Tetrahedron 2007, 63, 7334–7348.

    Article  CAS  Google Scholar 

  22. Adhikari, B.; Nanda, J.; Banerjee, A. Multicomponent hydrogels from enantiomeric amino acid derivatives: Helical nanofibers, handedness and self-sorting. Soft Matter 2011, 7, 8913–8922.

    Article  CAS  Google Scholar 

  23. Guo, Z. X.; Gong, R. Y.; Jiang, Y.; Wan, X. B. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: Gel formation and dye release. Soft Matter 2015, 11, 6118–6124.

    Article  CAS  Google Scholar 

  24. Ahn, J.; Lee, E.; Tan, J. W.; Yang, W.; Kim, B.; Moon, J. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater. Horiz. 2017, 4, 851–856.

    Article  CAS  Google Scholar 

  25. Miles, A. J.; Wallace, B. A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 2016, 45, 4859–4872.

    Article  CAS  Google Scholar 

  26. Shi, S. S.; Wang, Y.; Zeng, S. Y.; Cui, Y.; Xiao, Y. Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY. Adv. Opt. Mater. 2020, 8, 2000167.

    Article  CAS  Google Scholar 

  27. Song, J. Z.; Li, J. H.; Li, X. M; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  CAS  Google Scholar 

  28. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  29. Hao, C. L; Gao, Y. F.; Wu, D.; Li, S.; Xu, L. G.; Wu, X. L.; Guo, J.; Sun, M. Z.; Li, X.; Xu, C. L. et al. Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 2019, 31, 1903200.

    Article  Google Scholar 

  30. Cho, J.; Banerjee, S. Ligand-directed stabilization of ternary phases: Synthetic control of structural dimensionality in solution-grown cesium lead bromide nanocrystals. Chem. Mater. 2018, 30, 6144–6155.

    Article  CAS  Google Scholar 

  31. Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 2018, 30, 84–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Zhiyong Tang for help with CPL measurement. We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21976131 and 21922409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Wang or Yin Xiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Yang, X., Wang, Y. et al. Induced circularly polarized luminescence of perovskite nanocrystals by self-assembly chiral gel. Nano Res. 16, 1459–1464 (2023). https://doi.org/10.1007/s12274-022-4652-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4652-4

Keywords

Navigation