Skip to main content
Log in

A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cancer immunotherapy has made significant progress in the last few decades, revolutionizing oncology. However, low patient response rates and potential immune-related adverse events continue to be major clinical challenges. Cancer nanomedicine, by virtue of its regulated delivery and modular flexibility, has shown the potential to strengthen antitumor immune responses and sensitize tumors to immunotherapy. In this study, we developed tumor microenvironment (TME) responsive nanomedicine to achieve specific and localized amplification of the immune response in tumor tissue in a safe and effective manner, while simultaneously reducing immune-related side effects. We synthesized the TME responsive prodrug by coupling MSA-2, a stimulator of interferon genes (STING) agonist, and NLG-919, an indoleamine 2,3 dioxygenase (IDO) inhibitor. The prodrug was assembled into nanoparticles to enhance the solubility and bioavailability. By synthesizing a TME responsive prodrug, we aim to explore the therapeutic efficacy of combined regimen (STING agonist and IDO inhibitor) for cancer, and reduce the unwanted side effects of STING agonism on normal tissues. Free prodrug and nanoparticles were characterized by mass spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Following that, we investigated the tumor accumulation, anti-tumor activity, and toxicity in vitro and in vivo. Prodrug nanoparticles demonstrated the ability to inhibit the tumor growth and activate antitumor immune response by modulating immune cells populations in tumor microenvironment. The TME responsive nanomedicine provided an effective tool for precise targeting, promoting antitumor immunity, and efficient tumor growth inhibition with safety. Outcomes of this study may have implications for future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013, 342, 1432–1433.

    Article  CAS  Google Scholar 

  2. Postow, M. A.; Callahan, M. K.; Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 2015, 33, 1974–1982.

    Article  CAS  Google Scholar 

  3. Buchbinder, E. I.; Hodi, F. S. Immune-checkpoint blockade—Durable cancer control. Nat. Rev. Clin. Oncol. 2016, 13, 77–78.

    Article  CAS  Google Scholar 

  4. Sanmamed, M. F.; Chen, L. P. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2019, 176, 677.

    Article  CAS  Google Scholar 

  5. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

    Article  CAS  Google Scholar 

  6. Phuengkham, H.; Ren, L.; Shin, I. W.; Lim, Y. T. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 2019, 31, e1803322.

    Article  Google Scholar 

  7. Ahmad, S. M.; Borch, T. H.; Hansen, M.; Andersen, M. H. PD-L1-specific T cells. Cancer Immunol. Immunother. 2016, 65, 797–804.

    Article  CAS  Google Scholar 

  8. Blank, C.; Mackensen, A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: An update on implications for chronic infections and tumor evasion. Cancer Immunol. Immunother. 2007, 56, 739–745.

    Article  Google Scholar 

  9. Moy, A. J.; Tunnell, J. W. Combinatorial immunotherapy and nanoparticle mediated hyperthermia. Adv. Drug Deliv. Rev. 2017, 114, 175–183.

    Article  CAS  Google Scholar 

  10. Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

    Article  CAS  Google Scholar 

  11. Peng, J. R.; Yang, Q.; Xiao, Y.; Shi, K.; Liu, Q. Y.; Hao, Y.; Yang, F.; Han, R. X.; Qian, Z. Y. Tumor microenvironment responsive drug-dye-peptide nanoassembly for enhanced tumor-targeting, penetration, and photo-chemo-immunotherapy. Adv. Funct. Mater. 2019, 29, 1900004.

    Article  Google Scholar 

  12. Qin, S. Y.; Cheng, Y. J.; Lei, Q.; Zhang, A. Q.; Zhang, X. Z. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018, 171, 178–197.

    Article  CAS  Google Scholar 

  13. Muller, A. J.; Manfredi, M. G.; Zakharia, Y.; Prendergast, G. C. Inhibiting IDO pathways to treat cancer: Lessons from the ECHO-301 trial and beyond. Semin. Immunopathol. 2019, 41, 41–48.

    Article  CAS  Google Scholar 

  14. Peng, J. R.; Xiao, Y.; Li, W. T.; Yang, Q.; Tan, L. W.; Jia, Y. P.; Qu, Y.; Qian, Z. Y. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci. 2018, 5, 1700891.

    Article  Google Scholar 

  15. Yan, M. M.; Liu, Y. J.; Zhu, X. H.; Wang, X. L.; Liu, L. X.; Sun, H. F.; Wang, C.; Kong, D. L.; Ma, G. L. Nanoscale reduced graphene oxide-mediated photothermal therapy together with IDO inhibition and PD-L1 blockade synergistically promote antitumor immunity. ACS Appl. Mater. Interfaces 2019, 11, 1876–1885.

    Article  CAS  Google Scholar 

  16. Liu, D. C.; Chen, B. L.; Mo, Y. L.; Wang, Z. H.; Qi, T.; Zhang, Q.; Wang, Y. G. Redox-activated porphyrin-based liposome remote-loaded with indoleamine 2,3-dioxygenase (IDO) inhibitor for synergistic photoimmunotherapy through induction of immunogenic cell death and blockage of IDO pathway. Nano Lett. 2019, 19, 6964–6976.

    Article  CAS  Google Scholar 

  17. Xing, L.; Gong, J. H.; Wang, Y.; Zhu, Y.; Huang, Z. J.; Zhao, J.; Li, F.; Wang, J. H.; Wen, H.; Jiang, H. L. Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy. Biomaterials 2019, 206, 170–182.

    Article  CAS  Google Scholar 

  18. Long, G. V.; Dummer, R.; Hamid, O.; Gajewski, T. F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M. S.; Grob, J. J.; Kim, T. M. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019, 20, 1083–1097.

    Article  CAS  Google Scholar 

  19. Chandra, D.; Quispe-Tintaya, W.; Jahangir, A.; Asafu-Adjei, D.; Ramos, I.; Sintim, H. O.; Zhou, J.; Hayakawa, Y.; Karaolis, D. K.; Gravekamp, C. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol. Res. 2014, 2, 901–910.

    Article  CAS  Google Scholar 

  20. Jing, W. Q.; McAllister, D.; Vonderhaar, E. P.; Palen, K.; Riese, M. J.; Gershan, J.; Johnson, B. D.; Dwinell, M. B. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J. Immunother. Cancer 2019, 7, 115.

    Article  Google Scholar 

  21. Sen, T.; Rodriguez, B. L.; Chen, L.; Della Corte, C. M.; Morikawa, N.; Fujimoto, J.; Cristea, S.; Nguyen, T.; Diao, L. X.; Li, L. R. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019, 9, 646–661.

    Article  CAS  Google Scholar 

  22. Yang, H.; Lee, W. S.; Kong, S. J.; Kim, C. G.; Kim, J. H.; Chang, S. K.; Kim, S.; Kim, G.; Chon, H. J.; Kim, C. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J. Clin. Invest. 2019, 129, 4350–4364.

    Article  Google Scholar 

  23. Demaria, O.; De Gassart, A.; Coso, S.; Gestermann, N.; Di Domizio, J.; Flatz, L.; Gaide, O.; Michielin, O.; Hwu, P.; Petrova, T. V. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA 2015, 112, 15408–15413.

    Article  CAS  Google Scholar 

  24. Ager, C. R.; Reilley, M. J.; Nicholas, C.; Bartkowiak, T.; Jaiswal, A. R.; Curran, M. A. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res. 2017, 5, 676–684.

    Article  CAS  Google Scholar 

  25. Ghaffari, A.; Peterson, N.; Khalaj, K.; Vitkin, N.; Robinson, A.; Francis, J. A.; Koti, M. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br. J. Cancer 2018, 119, 440–449.

    Article  CAS  Google Scholar 

  26. Lemos, H.; Mohamed, E.; Huang, L.; Ou, R.; Pacholczyk, G.; Arbab, A. S.; Munn, D.; Mellor, A. L. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 2016, 76, 2076–2081.

    Article  CAS  Google Scholar 

  27. Munn, D. H.; Mellor, A. L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends Immunol. 2016, 37, 193–207.

    Article  CAS  Google Scholar 

  28. Prendergast, G. C.; Malachowski, W. P.; DuHadaway, J. B.; Muller, A. J. Discovery of IDO1 inhibitors: From bench to bedside. Cancer Res. 2017, 77, 6795–6811.

    Article  CAS  Google Scholar 

  29. Shi, J. Q.; Liu, C. Q.; Luo, S. N.; Cao, T. Y.; Lin, B. L.; Zhou, M.; Zhang, X.; Wang, S.; Zheng, T. S.; Li, X. B. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol. 2021, 366, 104384.

    Article  CAS  Google Scholar 

  30. Pan, B. S.; Perera, S. A.; Piesvaux, J. A.; Presland, J. P.; Schroeder, G. K.; Cumming, J. N.; Trotter, B. W.; Altman, M. D.; Buevich, A. V.; Cash, B. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 2020, 369, eaba6098.

    Article  CAS  Google Scholar 

  31. Ashok, B.; Arleth, L.; Hjelm, R. P.; Rubinstein, I.; Önyüksel, H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: Effects of PEG chain length and PC incorporation. J. Pharm. Sci. 2004, 93, 2476–2487.

    Article  CAS  Google Scholar 

  32. Vuković, L.; Khatib, F. A.; Drake, S. P.; Madriaga, A.; Brandenburg, K. S.; Král, P.; Onyuksel, H. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J. Am. Chem. Soc. 2011, 133, 13481–13488.

    Article  Google Scholar 

  33. Trubetskoy, V. S.; Torchilin, V. P. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev. 1995, 16, 311–320.

    Article  CAS  Google Scholar 

  34. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284.

    Article  CAS  Google Scholar 

  35. Shen, F. Y.; Feng, L. Z.; Zhu, Y. J.; Tao, D. L.; Xu, J.; Peng, R.; Liu, Z. Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. Biomaterials 2020, 255, 120190.

    Article  CAS  Google Scholar 

  36. Li, A. P.; Yi, M.; Qin, S.; Song, Y. P.; Chu, Q.; Wu, K. M. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 2019, 12, 35.

    Article  Google Scholar 

  37. Ye, Z. X.; Yue, L. X.; Shi, J. C.; Shao, M. M.; Wu, T. Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J. Cancer 2019, 10, 2771–2782.

    Article  CAS  Google Scholar 

  38. Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 2019, 19, 587–602.

    Article  CAS  Google Scholar 

  39. Chon, H. J.; Kim, H.; Noh, J. H.; Yang, H.; Lee, W. S.; Kong, S. J.; Lee, S. J.; Lee, Y. S.; Kim, W. R.; Kim, J. H. et al. STING signaling is a potential immunotherapeutic target in colorectal cancer. J. Cancer 2019, 10, 4932–4938.

    Article  CAS  Google Scholar 

  40. Liang, H.; Deng, L. F.; Hou, Y. Z.; Meng, X. J.; Huang, X. N.; Rao, E. Y.; Zheng, W. X.; Mauceri, H.; Mack, M.; Xu, M. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 2017, 8, 1736.

    Article  Google Scholar 

  41. Woo, S. R.; Fuertes, M. B.; Corrales, L.; Spranger, S.; Furdyna, M. J.; Leung, M. Y. K.; Duggan, R.; Wang, Y.; Barber, G. N.; Fitzgerald, K. A. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014, 41, 830–842.

    Article  CAS  Google Scholar 

  42. Prendergast, G. C.; Malachowski, W. J.; Mondal, A.; Scherle, P.; Muller, A. J. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int. Rev. Cell Mol. Biol. 2018, 336, 175–203.

    Article  CAS  Google Scholar 

  43. Li, A. L.; Barsoumian, H. B.; Schoenhals, J. E.; Cushman, T. R.; Caetano, M. S.; Wang, X. H.; Valdecanas, D. R.; Niknam, S.; Younes, A. I.; Li, G. et al. Indoleamine 2,3-dioxygenase 1 inhibition targets anti-PD1-resistant lung tumors by blocking myeloid-derived suppressor cells. Cancer Lett. 2018, 431, 54–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81920108001 and 81870007) and Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songmin Ying or Longguang Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syeda, M.Z., Hong, T., Zhang, M. et al. A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy. Nano Res. 15, 9215–9222 (2022). https://doi.org/10.1007/s12274-022-4598-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4598-6

Keywords

Navigation