Skip to main content
Log in

Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although the operating mechanism of sodium-ion battery (SIB) resembles that of lithium-ion battery, common film-forming additive for lithium-ion battery does not play its role in SIB. Therefore, it is essential to tailor new additives for SIB. Hard carbon (HC), as the most used anode material of SIB, has the disadvantage of interphasial instability, especially under the condition of long-term cycling. The incessant accumulation of electrolyte decomposition products leads to a significant increase in interphasial impedance and a sharp decline in discharge capacity. In this work, N-phenyl-bis(trifluoromethanesulfonimide) (PTFSI) was proposed as a novel film-forming electrolyte additive, which effectively enhances the long-term cycling performance for HC anode in SIB. The passivation film generated from the preferential reduction of PTFSI improves the capacity retention of HC/Na half-cell from 0% to 68% after 500 cycles. Profoundly, the enhanced interphasial stability of HC anode results in a 52% increase in capacity retention of HC/Na3V2(PO4)3 full-cells after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  2. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    CAS  Google Scholar 

  3. Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

    CAS  Google Scholar 

  4. Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

    CAS  Google Scholar 

  5. Sun, D. P.; Tan, Z.; Tian, X. Z.; Ke, F.; Wu Y. L.; Zhang, J. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021, 14, 4370–4385.

    CAS  Google Scholar 

  6. Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

    CAS  Google Scholar 

  7. Yan, G. C.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J. M. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun. 2019, 10, 585.

    CAS  Google Scholar 

  8. Wang, Y.; Liu, Y. K.; Liu, Y. C.; Shen, Q. Y.; Chen, C. C.; Qiu, F. Y.; Li, P.; Jiao, L. F.; Qu, X. H. Recent advances in electrospun electrode materials for sodium-ion batteries. J. Energy Chem. 2021, 54, 225–241.

    CAS  Google Scholar 

  9. Ma, X. M.; Cao, X. X.; Zhou, Y. F.; Guo, S.; Shi, X. D.; Fang, G. Z.; Pan, A. Q.; Lu, B. G.; Zhou, J.; Liang, S. Q. Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Res. 2020, 13, 3330–3337.

    CAS  Google Scholar 

  10. Dong, R. Q.; Zheng, L. M.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H. X.; Wu, C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810.

    CAS  Google Scholar 

  11. Bai, Q.; Yang, L. F.; Chen, H. L.; Mo, Y. F. Computational studies of electrode materials in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702998.

    Google Scholar 

  12. Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.

    Google Scholar 

  13. Cai, Y. S.; Liu, F.; Luo, Z. G.; Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018, 13, 168–174.

    Google Scholar 

  14. Wasalathilake, K. C.; Li, H. N.; Xu, L.; Yan, C. Recent advances in graphene based materials as anode materials in sodium-ion batteries. J. Energy Chem. 2020, 42, 91–107.

    Google Scholar 

  15. Sarkar, S.; Roy, S.; Zhao, Y. F.; Zhang, J. J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 2021, 14, 3690–3723.

    CAS  Google Scholar 

  16. Xie, F.; Xu, Z.; Guo, Z. Y.; Titirici, M. M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2020, 2, 042002.

    Google Scholar 

  17. Bai, P. X.; He, Y. W.; Zou, X. X.; Zhao, X. X.; Xiong, P. X.; Xu, Y. H. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 2018, 8, 1703217.

    Google Scholar 

  18. Reddy, M. A.; Helen, M.; Groß, A.; Fichtner, M.; Euchner, H. Insight into sodium insertion and the storage mechanism in hard carbon. ACS Energy Lett. 2018, 3, 2851–2857.

    Google Scholar 

  19. Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 10, 3469–3479.

    Google Scholar 

  20. Sun, J. G.; Sun, Y.; Oh, J. A. S.; Gu, Q. L.; Zheng, W. D.; Goh, M.; Zeng, K. Y.; Cheng, Y.; Lu, L. Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J. Energy Chem. 2021, 62, 497–504.

    CAS  Google Scholar 

  21. Jiang, K. R.; Tan, X. H.; Zhai, S. L.; Cadien, K.; Li, Z. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Res. 2021, 14, 4664–4673.

    CAS  Google Scholar 

  22. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    CAS  Google Scholar 

  23. Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

    Google Scholar 

  24. Bai, Y.; Wang, Z.; Wu, C.; Xu, R.; Wu, F.; Liu, Y. C.; Li, H.; Li, Y.; Lu, J.; Amine, K. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 5598–5604.

    CAS  Google Scholar 

  25. Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. Nonflammable electrolyte for safer non-aqueous sodium batteries. J. Mater. Chem. A 2015, 3, 14539–14544.

    CAS  Google Scholar 

  26. Feng, J. K.; Ci, L. J.; Xiong, S. L. Biphenyl as overcharge protection additive for nonaqueous sodium batteries. RSC Adv. 2015, 5, 96649–96652.

    CAS  Google Scholar 

  27. Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

    CAS  Google Scholar 

  28. Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.

    CAS  Google Scholar 

  29. Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

    CAS  Google Scholar 

  30. Lan, G. Y.; Zhou, H. B.; Xing, L. D.; Chen, J. W.; Li, Z. F.; Guo, R. D.; Che, Y. X.; Li, W. S. Insight into the interaction between Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode and BF4 -introducing electrolyte at 4.5 V high voltage. J. Energy Chem. 2019, 39, 235–243.

    Google Scholar 

  31. Liang, H. J.; Gu, Z. Y.; Zhao, X. X.; Guo, J. Z.; Yang, J. L.; Li, W. H.; Li, B.; Liu, Z. M.; Li, W. L.; Wu, X. L. Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew. Chem., Int. Ed. 2021, 60, 26837–26846.

    CAS  Google Scholar 

  32. Purushotham, U.; Takenaka, N.; Nagaoka, M. Additive effect of fluoroethylene and difluoroethylene carbonates for the solid electrolyte interphase film formation in sodium-ion batteries: A quantum chemical study. RSC Adv. 2016, 6, 65232–65242.

    CAS  Google Scholar 

  33. Che, H. Y.; Liu, J.; Wang, H.; Wang, X. P.; Zhang, S. S.; Liao, X. Z.; Ma, Z. F. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochem. Commun. 2017, 83, 20–23.

    CAS  Google Scholar 

  34. Benchakar, M.; Naéjus, R.; Damas, C.; Santos-Peña, J. Exploring the use of EMImFSI ionic liquid as additive or co-solvent for room temperature sodium ion battery electrolytes. Electrochim. Acta 2020, 330, 135193.

    CAS  Google Scholar 

  35. Kim, D. H.; Kang, B.; Lee, H. Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries. J. Power Sources 2019, 423, 137–143.

    CAS  Google Scholar 

  36. Jiang, Y.; Zhou, X. F.; Li, D. J.; Cheng, X. L.; Liu, F. F.; Yu, Y. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 2018, 8, 1800068.

    Google Scholar 

  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision A; Gaussian, Inc.: Wallingford, CT, 2009.

    Google Scholar 

  38. Xing, L. D.; Zheng, X. W.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q. S.; Li, W. S. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries. Acc. Chem. Res. 2018, 51, 282–289.

    CAS  Google Scholar 

  39. Liu, M. Z.; Vatamanu, J.; Chen, X. L.; Xing, L. D.; Xu, K.; Li, W. S. Hydrolysis of LiPF6-containing electrolyte at high voltage. ACS Energy Lett. 2021, 6, 2096–2102.

    CAS  Google Scholar 

  40. Luo, X. H.; Xing, L. D.; Vatamanu, J.; Chen, J. W.; Chen, J. K.; Liu, M. Z.; Wang, C.; Xu, K.; Li, W. S. Inhibiting manganese(II) from catalyzing electrolyte decomposition in lithium-ion batteries. J. Energy Chem. 2022, 65, 1–8.

    CAS  Google Scholar 

  41. Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.

    Google Scholar 

  42. Yamauchi, H.; Ikejiri, J.; Tsunoda, K.; Tanaka, A.; Sato, F.; Honma, T.; Komatsu, T. Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery. Sci. Rep. 2020, 10, 9453.

    CAS  Google Scholar 

  43. Che, Y. X.; Lin, X. Y.; Xing, L. D.; Guan, X. C.; Guo, R. D.; Lan, G. Y.; Zheng, Q. F.; Zhang, W. G.; Li, W. S. Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive. J. Energy Chem. 2021, 52, 361–371.

    CAS  Google Scholar 

  44. Fan, L. L.; Li, X. F. Recent advances in effective protection of sodium metal anode. Nano Energy 2018, 53, 630–642.

    CAS  Google Scholar 

  45. Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

    CAS  Google Scholar 

  46. Fondard, J.; Irisarri, E.; Courrèges, C.; Palacin, M. R.; Ponrouch, A.; Dedryvère, R. SEI composition on hard carbon in Na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF). J. Electrochem. Soc. 2020, 167, 070526.

    CAS  Google Scholar 

  47. Xu, X. F.; Zhou, D.; Qin, X. Y.; Lin, K.; Kang, F. Y.; Li, B. H.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018, 9, 3870.

    Google Scholar 

  48. Zhang, W. G.; Xing, L. D.; Chen, J. W.; Zhou, H. B.; Liang, S. M.; Huang, W. Y.; Li, W. S. Improving the cyclic stability of MoO2 anode for sodium ion batteries via film-forming electrolyte additive. J. Alloys Compd. 2020, 822, 153530.

    CAS  Google Scholar 

  49. Xiao, B. W.; Soto, F. A.; Gu, M.; Han, K. S.; Song, J. H.; Wang, H.; Engelhard, M. H.; Murugesan, V.; Mueller, K. T.; Reed, D. et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv. Energy Mater. 2018, 8, 1801441.

    Google Scholar 

  50. Malmgren, S.; Ciosek, K.; Lindblad, R.; Plogmaker, S.; Kühn, J.; Rensmo, H.; Edström, K.; Hahlin, M. Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 2013, 105, 83–91.

    CAS  Google Scholar 

  51. Tian, B. B.; Światowska, J.; Maurice, V.; Zanna, S.; Seyeux, A.; Klein, L. H.; Marcus, P. Combined surface and electrochemical study of the lithiation/delithiation mechanism of the iron oxide thin-film anode for lithium-ion batteries. J. Phys. Chem. C 2013, 117, 21651–21661.

    CAS  Google Scholar 

  52. Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 2016, 28, 8149–8159.

    CAS  Google Scholar 

  53. Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.

    CAS  Google Scholar 

  54. Bai, P. X.; He, Y. W.; Xiong, P. X.; Zhao, X. X.; Xu, K.; Xu, Y. H. Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Mater. 2018, 13, 274–282.

    Google Scholar 

  55. Ma, L. A.; Naylor, A. J.; Nyholm, L.; Younesi, R. Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. 2021, 133, 4905–4913.

    Google Scholar 

  56. Lee, Y.; Lim, H.; Kim, S. O.; Kim, H. S.; Kim, K. J.; Lee, K. Y.; Choi, W. Thermal stability of Sn anode material with non-aqueous electrolytes in sodium-ion batteries. J. Mater. Chem. A 2018, 6, 20383–20392.

    CAS  Google Scholar 

  57. Liu, M. Z.; Xing, L. D.; Xu, K.; Zhou, H. B.; Lan, J. L.; Wang, C.; Li, W. S. Deciphering the paradox between the Co-intercalation of sodium-solvent into graphite and its irreversible capacity. Energy Storage Mater. 2020, 26, 32–39.

    Google Scholar 

  58. Yuan, H. C.; Ma, F. X.; Wei, X. B.; Lan, J. L.; Liu, Y.; Yu, Y. H.; Yang, X. P.; Park, H. S. Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 2020, 10, 2001418.

    CAS  Google Scholar 

  59. Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C. P.; Nakai, H.; Yamada, A. Reversible sodium metal electrodes: Is fluorine an essential interphasial component? Angew. Chem., Int. Ed. 2019, 58, 8024–8028.

    CAS  Google Scholar 

  60. Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A. Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 2011, 186, 29–36.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21972049) and the Guangdong Program for Distinguished Young Scholar (No. 2017B030306013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengqing Xu or Lidan Xing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zeng, F., Huang, H. et al. Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Res. 16, 3823–3831 (2023). https://doi.org/10.1007/s12274-022-4583-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4583-0

Keywords

Navigation