Skip to main content
Log in

Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Significant chiroptical responses could be generated by chiral coupling of achiral plasmonic nanoparticles, or originated from intrinsically chiral plasmonic nanoparticles. Here we create dimeric plasmonic metamolecules possessing both chiral coupling between nanoparticles and intrinsic chiroptical responses derived from nanoparticles themselves. These plasmonic metamolecules are prepared by assembling helical plasmonic nanorods (HPNRs) with intrinsic chirality in chiral manners on DNA origami template. Two HPNRs with the same or opposite chirality, or one HPNR and one achiral gold nanorod, are coupled chirally into dimeric metamolecules with intriguing plasmonic circular dichroism (PCD). We found that both of the intrinsic chirality of constituent HPNRs and the chiral coupling contribute to the overall PCD while their weights are different in different metamolecules and vary in different wavelength range for a certain metamolecule. Comparing to conventional chiral plasmonic metamolecules from achiral nanoparticles, or discrete chiral nanoparticles, these metamolecules bring more dimensions for tailoring chiroptical responses and make it more flexible to design plasmonic nanodevices with custom PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    Article  CAS  Google Scholar 

  2. Liz-Marzán, L. M. Plasmonics. Electron oscillations and beyond.. J. Phys. Chem. Lett. 2013, 4, 1197–1198.

    Article  Google Scholar 

  3. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  CAS  Google Scholar 

  4. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

    Article  CAS  Google Scholar 

  5. Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

    Article  CAS  Google Scholar 

  6. Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 2010, 132, 3248–3249.

    Article  CAS  Google Scholar 

  7. Niu, R. J.; Song, C. Y.; Gao, F.; Fang, W. N.; Jiang, X. Y.; Ren, S. K.; Zhu, D.; Su, S.; Chao, J.; Chen, S. F. et al. DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2021, 60, 11695–11701.

    Article  CAS  Google Scholar 

  8. Zhan, P. F.; Wen, T.; Wang, Z. G.; He, Y. B.; Shi, J.; Wang, T.; Liu, X. F.; Lu, G. W.; Ding, B. Q. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2018, 57, 2846–2850.

    Article  CAS  Google Scholar 

  9. Trofymchuk, K.; Glembockyte, V.; Grabenhorst, L.; Steiner, F.; Vietz, C.; Close, C.; Pfeiffer, M.; Richter, L.; Schütte, M. L.; Selbach, F. et al. Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope. Nat. Commun. 2021, 12, 950.

    Article  CAS  Google Scholar 

  10. Song, M.; Tong, L. M.; Liu, S. L.; Zhang, Y. W.; Dong, J. Y.; Ji, Y. L.; Guo, Y.; Wu, X. C.; Zhang, X. D.; Wang, R. Y. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano 2021, 15, 5715–5724.

    Article  CAS  Google Scholar 

  11. Wang, Z. Y.; Zhang, N. N.; Li, J. C.; Lu, J.; Zhao, L.; Fang, X. D.; Liu, K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. Soft Matter 2021, 17, 6298–6304.

    Article  CAS  Google Scholar 

  12. Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties. Nano Res. 2016, 9, 451–457.

    Article  CAS  Google Scholar 

  13. Fan, Z. Y.; Govorov, A. O. Helical metal nanoparticle assemblies with defects: Plasmonic chirality and circular dichroism. J. Phys. Chem. C 2011, 115, 13254–13261.

    Article  CAS  Google Scholar 

  14. Auguié, B.; Alonso-Gómez, J. L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851.

    Article  Google Scholar 

  15. Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N. N.; Gomes, W. R.; Ramesar, N. S.; Liu, S. H.; Hu, Z.; Sun, T. M.; De Moura, A. F. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 2021, 371, 1368–1374.

    Article  CAS  Google Scholar 

  16. Pal, S.; Deng, Z. T.; Wang, H. N.; Zou, S. L.; Liu, Y.; Yan, H. DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 2011, 133, 17606–17609.

    Article  CAS  Google Scholar 

  17. Liu, W. Y.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 2016, 8, 867–873.

    Article  CAS  Google Scholar 

  18. Zhao, Z.; Chen, X. H.; Zuo, J. W.; Basiri, A.; Choi, S.; Yao, Y.; Liu, Y.; Wang, C. Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami. Nano Res. 2022, 15, 1327–1337.

    Article  CAS  Google Scholar 

  19. Kuzyk, A.; Jungmann, R.; Acuna, G. P.; Liu, N. DNA origami route for nanophotonics. ACS Photonics 2018, 5, 1151–1163.

    Article  CAS  Google Scholar 

  20. Liu, S. B.; Shang, Y. X.; Jiao, Y. F.; Li, N.; Ding, B. Q. DNA-based plasmonic nanostructures and their optical and biomedical applications. Nanotechnology 2021, 32, 402002.

    Article  CAS  Google Scholar 

  21. Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

    Article  CAS  Google Scholar 

  22. Shen, X. B.; Song, C.; Wang, J. Y.; Shi, D. W.; Wang, Z. A.; Liu, N.; Ding, B. Q. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 2012, 134, 146–149.

    Article  CAS  Google Scholar 

  23. Shen, X. B.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; de Abajo, F. J. G.; Liu, N.; Ding, B. Q. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128–2133.

    Article  CAS  Google Scholar 

  24. Shen, X. B.; Zhan, P. F.; Kuzyk, A.; Liu, Q.; Asenjo-Garcia, A.; Zhang, H.; de Abajo, F. J. G.; Govorov, A.; Ding, B. Q.; Liu, N. 3D plasmonic chiral colloids. Nanoscale 2014, 6, 2077–2081.

    Article  CAS  Google Scholar 

  25. Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.

    Article  CAS  Google Scholar 

  26. Liu, Y.; Ma, L.; Jiang, S. X.; Han, C.; Tang, P.; Yang, H.; Duan, X. Y.; Liu, N.; Yan, H.; Lan, X. DNA programmable self-assembly of planar, thin-layered chiral nanoparticle superstructures with complex two-dimensional patterns. ACS Nano 2021, 15, 16664–16672.

    Article  CAS  Google Scholar 

  27. Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A. O.; Liedl, T.; Liu, N. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 2014, 13, 862–866.

    Article  CAS  Google Scholar 

  28. Zhou, C.; Duan, X. Y.; Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 2015, 6, 8102.

    Article  CAS  Google Scholar 

  29. Xin, L.; Zhou, C.; Duan, X. Y.; Liu, N. A rotary plasmonic nanoclock. Nat. Commun. 2019, 10, 5394.

    Article  Google Scholar 

  30. Dong, J. Y.; Wang, M.; Zhou, Y. H.; Zhou, C.; Wang, Q. B. DNA-based adaptive plasmonic logic gates. Angew, Chem., Int. Ed. 2020, 59, 15038–15042.

    Article  CAS  Google Scholar 

  31. Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

    Article  Google Scholar 

  32. Klös, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635–1642.

    Article  Google Scholar 

  33. Kim, J. Y.; Yeom, J.; Zhao, G. P.; Calcaterra, H.; Munn, J.; Zhang, P. J.; Kotov, N. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 2019, 141, 11739–11744.

    Article  CAS  Google Scholar 

  34. Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

    Article  CAS  Google Scholar 

  35. Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

    Article  CAS  Google Scholar 

  36. Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

    Article  CAS  Google Scholar 

  37. González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martinez, A.; Taboada, J. M. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477.

    Article  Google Scholar 

  38. Wang, S.; Zheng, L. H.; Chen, W. J.; Ji, L. K.; Zhang, L.; Lu, W. S.; Fang, Z. Y.; Guo, F. C.; Qi, L. M.; Liu, M. H. Helically grooved gold nanoarrows: Controlled fabrication, superhelix, and transcribed chiroptical switching. CCS Chemistry 2021, 3, 2473–2484.

    Article  CAS  Google Scholar 

  39. Chen, J. Q.; Gao, X. S.; Zheng, Q.; Liu, J. B.; Meng, D. J.; Li, H. Y.; Cai, R.; Fan, H. Z.; Ji, Y. L.; Wu, X. C. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence. ACS Nano 2021, 15, 15114–15122.

    Article  CAS  Google Scholar 

  40. Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.

    Article  CAS  Google Scholar 

  41. Zhang, N. N.; Sun, H. R.; Liu, S. H.; Xing, Y. C.; Lu, J.; Peng, F.; Han, C. L.; Wei, Z. L.; Sun, T. M.; Yang, B. et al. Gold nanoparticle enantiomers and their chiral-morphology dependence of cellular uptake. CCS Chem. 2022, 4, 660–670.

    Article  CAS  Google Scholar 

  42. Zheng, G. C.; Jiao, S. L.; Zhang, W.; Wang, S. L.; Zhang, Q. H.; Gu, L.; Ye, W. X.; Li, J. J.; Ren, X. C.; Zhang, Z. C. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res., in press, https://doi.org/10.1007/s12274-022-4212-y.

  43. Zheng, G. C.; Bao, Z. Y.; Pérez-Juste, J.; Du, R. L.; Liu, W.; Dai, J. Y.; Zhang, W.; Lee, L. Y. S.; Wong, K. Y. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem., Int. Ed. 2018, 57, 16452–16457.

    Article  CAS  Google Scholar 

  44. Hao, C. L.; Xu, L. G.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv. Funct. Mater. 2018, 28, 1802372.

    Article  Google Scholar 

  45. Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.

    Article  CAS  Google Scholar 

  46. Dong, J. Y.; Zhou, Y. H.; Pan, J. H.; Zhou, C.; Wang, Q. B. Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chem. Commun. 2021, 57, 6201–6204.

    Article  CAS  Google Scholar 

  47. Fan, Z. Y.; Govorov, A. O. Chiral nanocrystals: Plasmonic spectra and circular dichroism. Nano Lett. 2012, 12, 3283–3289.

    Article  CAS  Google Scholar 

  48. Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

    Article  CAS  Google Scholar 

  49. Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21977112, and 21934007), the Natural Science Foundation of Jiangsu Province (No. BK20190227), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000) and the Science and Technology Project of Suzhou (No. SZS201904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Wang, X., Zhang, J. et al. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 15, 9447–9453 (2022). https://doi.org/10.1007/s12274-022-4520-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4520-2

Keywords

Navigation