Skip to main content
Log in

A chiral salen-Co(II) complex as soluble redox mediator for promoting the electrochemical performance of Li-O2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Low discharge capacity and poor cycle stability are the major obstacles hindering the operation of Li-O2 batteries with high-energy-density. These obstacles are mainly caused by the cathode passivation behaviours and the accumulation of by-products. Promoting the discharge process in solution and accelerating the decomposition of discharge products and by-products are able to alleviate above problems to some extent. Herein, chiral salen-Co(II) complex, (1R,2R)-(-)-N,N-bis(3,5-di-t-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) (Co(II)) as a multi-functional redox mediator was introduced into electrolyte to induce solution phase formation of Li2O2 and catalyze the oxidation of Li2O2 and main by-products Li2CO3. Due to the Co(II) has the solvation effect towards Li+, it can drive solution phase formation of Li2O2, to prevent electrode from passivation and then increase the discharge capacity with a high Li2O2 yield of 96.09 %. Furthermore, the Co(II) possesses suitable redox couple potentials, and it does so while simultaneously boosting the oxidization of Li2O2 and the decomposition of Li2CO3, reducing charge overpotential, and promoting cycle lifespan. Thereby, a cell with Co(II) achieved a long cycling stability at low charge plateau (3.66 V) over 252 cycles with a specific capacity of 500 mAh·gcarbon−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luntz, A. C.; McCloskey, B. D. Nonaqueous Li-air batteries: A status report. Chem. Rev. 2014, 114, 11721–11750.

    Article  CAS  Google Scholar 

  2. Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

    Article  CAS  Google Scholar 

  3. Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128–5640.

    Article  CAS  Google Scholar 

  4. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  CAS  Google Scholar 

  5. Liu, T.; Leskes, M.; Yu, W. J.; Moore, A. J.; Zhou, L. N.; Bayley, P. M.; Kim, G.; Grey, C. P. Cycling Li-O2 batteries via LiOH formation and decomposition. Science 2015, 350, 530–533.

    Article  CAS  Google Scholar 

  6. Huang, Z. M.; Ren, J.; Zhang, W.; Xie, M. L.; Li, Y. K.; Sun, D.; Shen, Y.; Huang, Y. H. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 2018, 30, 1803270.

    Article  Google Scholar 

  7. Wang, D.; Zhang, F.; He, P.; Zhou, H. S. A versatile halide ester enabling Li-anode stability and a high rate capability in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 2355–2359.

    Article  CAS  Google Scholar 

  8. Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem. 2021, 133, 26177–26184.

    Article  Google Scholar 

  9. Zhou, Y.; Yin, K.; Gu, Q. F.; Tao, L.; Li, Y. J.; Tan, H.; Zhou, J. H.; Zhang, W. S.; Li, H. B.; Guo, S. J. Lewis-acidic PtIr multipods enable high-performance Li-O2 bateeries. Angew. Chem., Int. Ed. 2021, 60, 26592–26598.

    Article  CAS  Google Scholar 

  10. Wang, X. X.; Guan, D. H.; Li, F.; Li, M. L.; Zheng, L. J.; Xu, J. J. Magnetic and optical field multi-assisted Li-O2 batteries with ultrahigh energy efficiency and cycle stability. Adv. Mater. 2022, 34, 2104792.

    Article  CAS  Google Scholar 

  11. Lim, H. S.; Kwak, W. J.; Chae, S.; Wi, S.; Li, L. Z.; Hu, J. T.; Tao, J. H.; Wang, C. M.; Xu W.; Zhang, J. G. Stable solid electrolyte interphase layer formed by electrochemical pretreatment of gel polymer coating on Li metal anode for lithium-oxygen batteries. ACS Energy Lett. 2021, 6, 3321–3331.

    Article  CAS  Google Scholar 

  12. Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 2015, 7, 50–56.

    Article  CAS  Google Scholar 

  13. Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

    Article  CAS  Google Scholar 

  14. Gao, X. W.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888.

    Article  CAS  Google Scholar 

  15. Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li-O2 batteries. Adv. Mater. 2016, 28, 9620–9628.

    Article  CAS  Google Scholar 

  16. Gao, X. W.; Jovanov, Z. P.; Chen, Y. H.; Johnson, L. R.; Bruce, P. G. Phenol-catalyzed discharge in the aprotic lithium-oxygen battery. Angew. Chem., Int. Ed 2017, 56, 6539–6543.

    Article  CAS  Google Scholar 

  17. Zhang, Y. T.; Wang, L.; Zhang, X. Z.; Guo, L. M.; Wang, Y.; Peng, Z. Q. High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li-O2 battery. Adv. Mater. 2018, 30, 1705571.

    Article  Google Scholar 

  18. Liu, Z. J.; Ma, L. P.; Guo, L. M.; Peng, Z. Q. Promoting solution discharge of Li-O2 batteries with immobilized redox mediators. J. Phys. Chem. Lett. 2018, 9, 5915–5920.

    Article  CAS  Google Scholar 

  19. Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS Appl. Mater. Interfaces 2018, 10, 7989–7995.

    Article  CAS  Google Scholar 

  20. Deng, H.; Qiao, Y.; Zhang, X. P.; Qiu, F. L.; Chang, Z.; He, P.; Zhou, H. S. Killing two birds with one stone: A Cu ion redox mediator for a non-aqueous Li-O2 battery. J. Mater. Chem. A 2019, 7, 17261–17265.

    Article  CAS  Google Scholar 

  21. Shen, Z. Z.; Lang, S. Y.; Zhou, C.; Wen, R.; Wan, L. J. In situ realization of water-mediated interfacial processes at nanoscale in aprotic Li-O2 batteries. Adv. Energy Mater. 2020, 10, 2002339.

    Article  CAS  Google Scholar 

  22. Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

    Article  CAS  Google Scholar 

  23. Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

    Article  Google Scholar 

  24. Fan, W. G.; Guo, X. X.; Xiao, D. D.; Gu, L. Influence of gold nanoparticles anchored to carbon nanotubes on formation and decomposition of Li2O2 in nonaqueous Li-O2 batteries. J. Phys. Chem. C 2014, 118, 7344–7350.

    Article  CAS  Google Scholar 

  25. Yang, L.; Frith, J. T.; Garcia-Araez, N.; Owen, J. R. A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen. Chem. Commun. 2015, 51, 1705–1708.

    Article  CAS  Google Scholar 

  26. Wan, H.; Sun, Y. J.; Cai, W. L.; Shi, Q. Q.; Zhu, Y. C.; Qian, Y. T. A friendly soluble protic additive enabling high discharge capability and stabilizing Li metal anodes in Li-O2 batteries. Adv. Funct. Mater. 2022, 32, 2106984.

    Article  CAS  Google Scholar 

  27. Chen, C. G.; Chen, X.; Zhang, X. H.; Li, L. Y.; Zhang, C. C.; Huang, T.; Yu, A. S. A new type of cyclic silicone additive for improving the energy density and power density of Li-O2 batteries. J. Mater. Chem. A 2018, 6, 7221–7226.

    Article  CAS  Google Scholar 

  28. Xiong, Q.; Huang, G.; Zhang, X. B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem., Int. Ed. 2020, 59, 19311–19319.

    Article  CAS  Google Scholar 

  29. Wan, H.; Sun, Y. J.; Li, Z. D.; Wang, W. W.; Zhu, Y. C.; Qian, Y. T. Satisfying both sides: Novel low-cost soluble redox mediator ethoxyquin for high capacity and low overpotential Li-O2 batteries. Energy Storage Mater. 2021, 40, 159–165.

    Article  Google Scholar 

  30. Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. TEMPO:A mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064.

    Article  CAS  Google Scholar 

  31. Kundu, D.; Black, R.; Adams, B.; Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries. ACS Cent. Sci. 2015, 1, 510–515.

    Article  CAS  Google Scholar 

  32. Liang, Z. J.; Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 2016, 138, 7574–7583.

    Article  CAS  Google Scholar 

  33. Ryu, W. H.; Gittleson, F. S.; Thomsen, J. M.; Li, J. Y.; Schwab, M. J.; Brudvig, G. W.; Taylor, A. D. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 2016, 7, 12925.

    Article  CAS  Google Scholar 

  34. Yao, K. P. C.; Frith, J. T.; Sayed, S. Y.; Bardé, F.; Owen, J. R.; Shao-Horn, Y.; Garcia-Araez, N. Utilization of cobalt bis(terpyridine) metal complex as soluble redox mediator in Li-O2 batteries. J. Phys. Chem. C 2016, 120, 16290–16297.

    Article  CAS  Google Scholar 

  35. Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

    Article  Google Scholar 

  36. Xu, C. Y.; Xu, G. Y.; Zhang, Y. D.; Fang, S.; Nie, P.; Wu, L. Y.; Zhang, X. G. Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li-O2 batteries. ACS Energy Lett. 2017, 2, 2659–2666.

    Article  CAS  Google Scholar 

  37. Zhao, Q.; Katyal, N.; Seymour, I. D.; Henkelman, G.; Ma, T. Y. Vanadium(III) acetylacetonate as an efficient soluble catalyst for lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 12553–12557.

    Article  CAS  Google Scholar 

  38. Bai, W. L.; Zhang, Z.; Chen, X.; Wei, X.; Zhang, Q.; Xu, Z. X.; Liu, Y. S.; Chang, B. B.; Wang, K. X.; Chen, J. S. Boosting the electrochemical performance of Li-O2 batteries with DPPH redox mediator and graphene-luteolin-protected lithium anode. Energy Storage Mater. 2020, 31, 373–381.

    Article  Google Scholar 

  39. Hu, X. F.; Wang, J. B.; Li, Z. F.; Wang, J. Q.; Gregory, D. H.; Chen, J. MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier Co-salen in electrolyte for high-performance Li-air batteries. Nano Lett. 2017, 17, 2073–2078.

    Article  CAS  Google Scholar 

  40. Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A., III; Kim, H.; Kang, K. Toward a lithium-“air” battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 2013, 135, 9733–9742.

    Article  CAS  Google Scholar 

  41. Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells. Phys. Chem. Chem. Phys. 2013, 15, 11478–11493.

    Article  CAS  Google Scholar 

  42. Ling, C.; Zhang, R. G.; Takechi, K.; Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 2014, 118, 26591–26598.

    Article  CAS  Google Scholar 

  43. Zhao, Z. W.; Huang, J.; Peng, Z. Q. Achilles’ heel of lithium-air batteries: Lithium carbonate. Angew. Chem., Int. Ed. 2018, 57, 3874–3886.

    Article  CAS  Google Scholar 

  44. McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.

    Article  CAS  Google Scholar 

  45. Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

    Article  CAS  Google Scholar 

  46. Lim, H. D.; Lee, B.; Zheng, Y. P.; Hong, J.; Kim, J.; Gwon, H.; Ko, Y.; Lee, M.; Cho, K.; Kang, K. Rational design of redox mediators for advanced Li-O2 batteries. Nat. Energy 2016, 1, 16066.

    Article  CAS  Google Scholar 

  47. Kwak, W. J.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1701232.

    Article  Google Scholar 

  48. Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H. et al. Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem., Int. Ed. 2014, 53, 3926–3931.

    Article  CAS  Google Scholar 

  49. Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

    Article  CAS  Google Scholar 

  50. Wang, R.; Yu, X. Q.; Bai, J. M.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113–118.

    Article  CAS  Google Scholar 

  51. Fan, L. J.; Tang, D. C.; Wang, D. Y.; Wang, Z. X.; Chen, L. Q. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Res. 2016, 9, 3903–3913.

    Article  CAS  Google Scholar 

  52. Sellers, R. M. Spectrophotometry determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 1980, 105, 950–954.

    Article  CAS  Google Scholar 

  53. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT 2016.

  54. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  55. Bieker, G.; Wellmann, J.; Kolek, M.; Jalkanen, K.; Winter, M.; Bieker, P. Influence of cations in lithium and magnesium polysulphide solutions: Dependence of the solvent chemistry. Phys. Chem. Chem. Phys. 2017, 19, 11152–11162.

    Article  CAS  Google Scholar 

  56. Liu, Z. X.; Zhang, Y. T.; Jia, C. K.; Wan, H.; Peng, Z.; Bi, Y. J.; Liu, Y.; Peng, Z. Q.; Wang, Q.; Li, H. et al. Decomposing lithium carbonate with a mobile catalyst. Nano Energy 2017, 36, 390–397.

    Article  CAS  Google Scholar 

  57. Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A safe and sustainable lithium-ion-oxygen battery based on a low-cost dual-carbon electrodes architecture. Adv. Mater. 2021, 33, 2100827.

    Article  CAS  Google Scholar 

  58. Guo, X.; Zhang, J. Q.; Zhao, Y. F.; Sun, B.; Liu, H.; Wang, G. X. Ultrathin porous NiCo2O4 nanosheets for lithium-oxygen batteries: An excellent performance deriving from an enhanced solution mechanism. ACS Appl. Energy Mater. 2019, 2, 4215–4223.

    Article  CAS  Google Scholar 

  59. Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Tkacheva, A.; Liu, Z. J.; Yan, K.; Guo, X.; McDonagh, A. M.; Shanmukaraj, D.; Wang, C. Y. et al. A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 2019, 10, 602.

    Article  CAS  Google Scholar 

  60. Zhang, X. M.; Guo, L. M.; Gan, L. F.; Zhang, Y. T.; Wang, J.; Johnson, L. R.; Bruce, P. G.; Peng, Z. Q. LiO2: Cryosynthesis and chemical/electrochemical reactivities. J. Phys. Chem. Lett. 2017, 8, 2334–2338.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0206703), the National Natural Science Foundation of China (No. 22075270), the National Natural Science Foundation of China (No. 21903019), and the Top Young Talents Program in University of Hebei Province (No. BJ2020014), and the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongchun Zhu or Yitai Qian.

Electronic Supplementary Material

12274_2022_4490_MOESM1_ESM.pdf

A chiral salen-Co(II) complex as soluble redox mediator for promoting the electrochemical performance of Li-O2 batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Sun, Y., Yu, J. et al. A chiral salen-Co(II) complex as soluble redox mediator for promoting the electrochemical performance of Li-O2 batteries. Nano Res. 15, 8101–8108 (2022). https://doi.org/10.1007/s12274-022-4490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4490-4

Keywords

Navigation