Skip to main content
Log in

Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) have gained extensive attention owing to the high safety, low cost, and high power/energy densities. But unfortunately the ZIBs universally suffer from the highly damaging series of side reactions, majorly including the insulating products formation, dendritic growth of zinc, and hydrogen evolution. To date there are few reports on the effective strategy that can solve the problems at the same time. Here we propose a novel hybrid electrolyte with Al3+ as additive to construct an aqueous ZIB composed of metallic zinc anode and K0.51V2O5 (KVO) nanoplate cathode. The highly reversible multistep K+/Zn2+-ions co-insertion/extraction in the lamellar structure with large interlayer spacing is clearly evidenced by systematical characterizations. In the presence of Al3+, the insulating basic zinc salts on the cathode surface have been reduced greatly, and the electrochemical potential window has been significantly expanded from 3 to 4.35 V. More interestingly, the Al3+ acts as a dopant embedded into the lattice that strengthens the crystal structure. Benefits from the suppressed zinc dendrite growth, the symmetrical Zn/Zn battery exhibited a satisfactory cycling life over 1,500 h at a high rate of 3 mA·cm−2 in the hybrid electrolyte. As a result, the Zn/KVO batteries delivered a high specific capacity of 210 mAh·g−1 and retained high capacity retention of 91% after 1,600 h at a low current of 100 mA·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

    Article  Google Scholar 

  2. Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

    Article  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  4. Zhang, Y. M.; Wu, Y. T.; You, W. Q.; Tian, M. K.; Huang, P. W.; Zhang, Y. F.; Sun, Z. J.; Ma, Y.; Hao, T. Q.; Liu, N. Deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte. Nano Lett. 2020, 20, 4700–4707.

    Article  CAS  Google Scholar 

  5. Pan, Z. H.; Liu, X. M.; Yang, J.; Li, X.; Liu, Z. L.; Loh, X. J.; Wang, J. Aqueous rechargeable multivalent metal-ion batteries: Advances and challenges. Adv. Energy Mater. 2021, 11, 2100608.

    Article  CAS  Google Scholar 

  6. Huang, J. H.; Guo, Z. W.; Ma, Y. Y.; Bin, D.; Wang, Y. G.; Xia, Y. Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019, 3, 1800272.

    Article  Google Scholar 

  7. Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

    Article  CAS  Google Scholar 

  8. Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

    Article  CAS  Google Scholar 

  9. Zheng, X. H.; Ahmad, T.; Chen, W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 2021, 39, 365–394.

    Article  Google Scholar 

  10. Yang, G. Z.; Li, Q.; Ma, K. X.; Hong, C.; Wang, C. X. The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 8084–8095.

    Article  CAS  Google Scholar 

  11. Guo, S.; Qin, L. P.; Zhang, T. S.; Zhou, M.; Zhou, J.; Fang, G. Z.; Liang, S. Q. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 34, 545–562.

    Article  Google Scholar 

  12. Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.

    Article  CAS  Google Scholar 

  13. Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. A. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, e2101131.

  14. Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.

    Article  Google Scholar 

  15. Hao, J. N.; Long, J.; Li, B.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Yang, Z. H.; Pang, W. K.; Guo, Z. P. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 2019, 29, 1903605.

    Article  Google Scholar 

  16. Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. A.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The Three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

    Article  Google Scholar 

  17. Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

    Article  Google Scholar 

  18. Guo, X.; Fang, G. Z.; Zhang, W. Y.; Zhou, J.; Shan, L. T.; Wang, L. B.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 2018, 8, 1801819.

    Article  Google Scholar 

  19. Zhang, Y. M.; Li, H. N.; Huang, S. Z.; Fan, S.; Sun, L. N.; Tian, B. B.; Chen, F. M.; Wang, Y.; Shi, Y. M.; Yang, H. Y. Rechargeable aqueous zinc-ion batteries in MgSO4/ZnSO4 hybrid electrolytes. Nano-Micro Lett. 2020, 12, 60.

    Article  CAS  Google Scholar 

  20. Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5, 000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

    Article  CAS  Google Scholar 

  21. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

    Article  CAS  Google Scholar 

  22. Chamoun, M.; Brant, W. R.; Tai, C. W.; Karlsson, G.; Noréus, D. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 2018, 15, 351–360.

    Article  Google Scholar 

  23. Li, N.; Li, G. Q.; Li, C. J.; Yang, H. C.; Qin, G. W.; Sun, X. D.; Li, F.; Cheng, H. M. Bi-cation electrolyte for a 1. 7 V aqueous Zn ion battery. ACS Appl. Mater. Interfaces 2020, 12, 13790–13796.

    Article  CAS  Google Scholar 

  24. Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

    Article  Google Scholar 

  25. Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J Mater. Chem. A 2017, 5, 730–738.

    Article  CAS  Google Scholar 

  26. Chang, G.; Liu, S. J.; Fu, Y. N.; Hao, X.; Jin, W.; Ji, X. B.; Hu, J. G. Inhibition role of trace metal ion additives on zinc dendrites during plating and striping processes. Adv. Mater. Interfaces 2019, 6, 1901358.

    Article  CAS  Google Scholar 

  27. Ding, J. W.; Gao, H. G.; Ji, D. F.; Zhao, K.; Wang, S. W.; Cheng, F. Y. Vanadium-based cathodes for aqueous zinc-ion batteries: From crystal structures, diffusion channels to storage mechanisms. J. Mater. Chem. A 2021, 9, 5258–5275.

    Article  CAS  Google Scholar 

  28. Han, M. M.; Qin, L. P.; Liu, Z.; Zhang, L. X.; Li, X. K.; Lu, B. G.; Huang, J. W.; Liang, S. Q.; Zhou, J. Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 2021, 20, 100626.

    Article  CAS  Google Scholar 

  29. Xiao, L. F.; Zhao, Y. Q.; Yang, Y. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim. Acta 2008, 54, 545–550.

    Article  CAS  Google Scholar 

  30. Luo, M.; Zhang, R.; Gong, Y. Q.; Wang, M.; Chen, Y. B.; Chu, M.; Chen, L. Effects of doping Al on the structure and electrochemical performances of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials. Ionics 2017, 24, 967–976.

    Article  Google Scholar 

  31. Zhu, Y. H.; Zhang, Q.; Yang, X.; Zhao, E. Y.; Sun, T.; Zhang, X. B.; Wang, S.; Yu, X.-Q.; Yan, J.-M.; Jiang, Q. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-Ion batteries. Chem. 2019, 5, 168–179.

    Article  CAS  Google Scholar 

  32. Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Soundharrajan, V.; Sambandam, B.; Jo, J.; Park, S.; Lee, S.; Mathew, V.; Kim, J. K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. J. Mater. Chem. A 2019, 7, 20335–20347.

    Article  CAS  Google Scholar 

  33. Tang, B. Y.; Fang, G. Z.; Zhou, J.; Wang, L. B.; Lei, Y. P.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579–587.

    Article  CAS  Google Scholar 

  34. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

    Article  CAS  Google Scholar 

  35. Li, Q.; Wei, T. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Boosting the cyclic stability of aqueous zinc-ion battery based on Al-doped V10O24·12H2O cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 20888–20894.

    Article  Google Scholar 

  36. Ding, Y. L.; Xie, J.; Cao, G. S.; Zhu, T. J.; Yu, H. M.; Zhao, X. B. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries. J. Phys. Chem. C 2011, 115, 9821–9825.

    Article  CAS  Google Scholar 

  37. Ming, F. W.; Liang, H. F.; Lei, Y. J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018, 3, 2602–2609.

    Article  CAS  Google Scholar 

  38. Hu, P.; Zhu, T.; Wang, X. P.; Zhou, X. F.; Wei, X. J.; Yao, X. H.; Luo, W.; Shi, C. W.; Owusu, K. A.; Zhou, L. et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 2019, 58, 492–498.

    Article  CAS  Google Scholar 

  39. Zou, Z. G.; Hou, Z. L.; Wang, J. L.; Gao, Y.; Wan, Z. D.; Han, S. C. Hydrothermal synthesis and electrochemical performance of Al-doped VO2(B) as cathode materials for lithium-ion battery. Int. J. Electrochem. Sci. 2017, 12, 4979–4989.

    Article  CAS  Google Scholar 

  40. Hu, P.; Yan, M. Y.; Zhu, T.; Wang, X. P.; Wei, X. J.; Li, J. T.; Zhou, L.; Li, Z. H.; Chen, L. N.; Mai, L. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 2017, 9, 42717–42722.

    Article  CAS  Google Scholar 

  41. Ding, J. W.; Du, Z. G.; Gu, L. Q.; Li, B.; Wang, L. Z.; Wang, S. W.; Gong, Y. J.; Yang, S. B. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 2018, 30, 1800762.

    Article  Google Scholar 

  42. Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·3H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758–1763.

    Article  CAS  Google Scholar 

  43. Li, Q.; Liu, Y. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. In situ Ag nanoparticles reinforced pseudo-Zn-air reaction boosting Ag2V4O11 as high-performance cathode material for aqueous zinc-ion batteries. Small Methods 2019, 3, 1900637.

    Article  CAS  Google Scholar 

  44. Hu, P.; Zhu, T.; Ma, J. X.; Cai, C. C.; Hu, G. W.; Wang, X. P.; Liu, Z. A.; Zhou, L.; Mai, L. Q. Porous V2O5 microspheres: A high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 2019, 55, 8486–8489.

    Article  CAS  Google Scholar 

  45. Zhu, K. Y.; Wu, T.; Sun, S. C.; Van Den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.

    Article  Google Scholar 

  46. Su, G.; Chen, S. F.; Dong, H. L.; Cheng, Y. F.; Liu, Q.; Wei, H. X.; Ang, E. H.; Geng, H. B.; Li, C. C. Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale 2021, 13, 2399–2407.

    Article  CAS  Google Scholar 

  47. Li, R. X.; Guan, C.; Bian, X. F.; Yu, X.; Hu, F. NaV6O15 microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries. RSC Adv. 2020, 10, 6807–6813.

    Article  Google Scholar 

  48. Ko, J. S.; Paul, P. P.; Wan, G.; Seitzman, N.; DeBlock, R. H.; Dunn, B. S.; Toney, M. F.; Weker, J. N. NASICON Na3V2(PO4)3 enables quasi-two-stage Na+ and Zn2+ intercalation for multivalent zinc batteries. Chem. Mater. 2020, 32, 3028–3035.

    Article  CAS  Google Scholar 

  49. Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.

    Article  CAS  Google Scholar 

  50. Batyrbekuly, D.; Laïk, B.; Pereira Ramos, J. P.; Bakenov, Z.; Baddour-Hadjean, R. A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries. J. Energy Chem. 2021, 61, 459–468.

    Article  CAS  Google Scholar 

  51. Jiang, H. M.; Zhang, Y. F.; Xu, L.; Gao, Z. M.; Zheng, J. Q.; Wang, Q. S.; Meng, C. G.; Wang, J. Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 2020, 382, 122844.

    Article  CAS  Google Scholar 

  52. He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

    Article  Google Scholar 

  53. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanim. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 91963210, U1801255, and 51872340) and Guangdong Provincial Natural Science Foundation, China (No. 2021A1515010143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianyu Zhang or Gongzheng Yang.

Electronic Supplementary Material

12274_2022_4419_MOESM1_ESM.pdf

Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Ma, K., Zhang, Q. et al. Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive. Nano Res. 15, 8039–8047 (2022). https://doi.org/10.1007/s12274-022-4419-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4419-y

Keywords

Navigation