Skip to main content
Log in

The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrodesulfurization (HDS) is an essential process in clean fuel oil production, however, the huge challenge is the synthesis of the catalyst with plentiful active sites. Here, we have shown the design of few-layered, ultrashort Ni-Mo-S slabs dispersed on reduced graphene oxide (Ni-Mo-S/rGO-A) based on anchoring [PMo12O40]3− clusters and Ni2+ on polyethyleneimine (PEI)-modified graphite oxide. Structural characterizations (transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), etc.) show that Ni-Mo-S slabs with predominant monolayer and partial substitution of edge Mo atoms by isolated Ni atoms have rich accessible edge Ni-Mo-S sites and high sulfurization degree. All virtues endow it with plentiful edge-active sites, and consequently, the enhanced performance for hydrodesulfurization of dibenzothiophene (DBT). The hydrodesulfurization proceeds via a more-favorable direct desulfurization (DDS) route with a reaction rate constant (kHDS) of 48.6 × 10−7 mol·g−1·s−1 over Ni-Mo-S/rGO-A catalyst, which is 4.3 times greater than that over traditional Ni-Mo-S/Al2O3 catalyst and at the forefront of reported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peralta-Yahya, P. P.; Zhang, F. Z.; Del Cardayre, S. B.; Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488, 320–328.

    CAS  Google Scholar 

  2. Wang, L. D.; He, W.; Yu, Z. K. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621.

    CAS  Google Scholar 

  3. Ihli, J.; Bloch, L.; Krumeich, F.; Wakonig, K.; Holler, M.; Guizar-Sicairos, M.; Weber, T.; Da Silva, J. C.; Van Bokhoven, J. A. Hierarchical structure of NiMo hydrodesulfurization catalysts determined by ptychographic X-ray computed tomography. Angew. Chem., Int. Ed. 2020, 59, 17266–17271.

    CAS  Google Scholar 

  4. Wang, S. M.; Ge, H.; Sun, S. L.; Zhang, J. Z.; Liu, F. M.; Wen, X. D.; Yu, X. H.; Wang, L. P.; Zhang, Y.; Xu, H. W. et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 2015, 137, 4815–4822.

    CAS  Google Scholar 

  5. Li, Y. X.; Shen, J. X.; Peng, S. S.; Zhang, J. K.; Wu, J.; Liu, X. Q.; Sun, L. B. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nat. Commun. 2020, 11, 3206.

    CAS  Google Scholar 

  6. Zhang, S. M.; Liu, N.; Wang, H. W.; Lu, Q. C.; Shi, W. X.; Wang, X. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide-polyoxometalate heterostructures. Adv. Mater. 2021, 13, 2100576.

    Google Scholar 

  7. Zhang, M.; Liu, J. Q.; Li, H. P.; Wei, Y. C.; Fu, Y. J.; Liao, W. Y.; Zhu, L. H.; Chen, G. Y.; Zhu, W. S.; Li, H. M. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B: Environ. 2020, 271, 118936.

    CAS  Google Scholar 

  8. López-Benítez, A.; Guevara-Lara, A.; Berhault, G. Nickel-containing polyoxotungstates based on [PW9O34]9− and [PW10O39]13− keggin lacunary anions supported on Al2O3 for dibenzothiophene hydrodesulfurization application. ACS Catal. 2019, 9, 6711–6727.

    Google Scholar 

  9. Wagenhofer, M. F.; Shi, H.; Gutiérrez, O. Y.; Jentys, A.; Lercher, J. A. Enhancing hydrogenation activity of Ni-Mo sulfide hydrodesulfurization catalysts. Sci. Adv. 2020, 6, eaax5331.

    CAS  Google Scholar 

  10. Liang, J. L.; Wu, M. M.; Wei, P. H.; Zhao, J. C.; Huang, H.; Li, C. F.; Lu, Y. K.; Liu, Y. Q.; Liu, C. G. Efficient hydrodesulfurization catalysts derived from strandberg P-Mo-Ni polyoxometalates. J. Catal. 2018, 358, 155–167.

    CAS  Google Scholar 

  11. Gutiérrez, O. Y.; Klimova, T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J. Catal. 2011, 281, 50–62.

    Google Scholar 

  12. Jiao, J. Q.; Fu, J. Y.; Wei, Y. C.; Zhao, Z.; Duan, A. J.; Xu, C. M.; Li, J. M.; Song, H.; Zheng, P.; Wang, X. L. et al. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal-support interaction. J. Catal. 2017, 356, 269–282.

    CAS  Google Scholar 

  13. Gutiérrez, O. Y.; Singh, S.; Schachtl, E.; Kim, J.; Kondratieva, E.; Hein, J.; Lercher, J. A. Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. ACS Catal. 2014, 4, 1487–1499.

    Google Scholar 

  14. Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

    CAS  Google Scholar 

  15. Yang, L.; Wang, X. Z.; Liu, Y.; Yu, Z. F.; Liang, J. J.; Chen, B. B.; Shi, C.; Tian, S.; Li, X.; Qiu, J. S. Monolayer MoS2 anchoeed on reduced graphene oxide nanosheets for efficient hydrodesulfurization. Appl. Catal. B: Environ. 2017, 200, 211–221.

    CAS  Google Scholar 

  16. Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

    CAS  Google Scholar 

  17. Huang, L. B.; Zhao, L.; Zhang, Y.; Chen, Y. Y.; Zhang, Q. H.; Luo, H.; Zhang, X.; Tang, T.; Gu, L.; Hu, J. S. Self-limited on-site conversion of MoO3 nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1800734.

    Google Scholar 

  18. Rangarajan, S.; Mavrikakis, M. On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition. ACS Catal. 2017, 7, 501–509.

    CAS  Google Scholar 

  19. Sushkevich, V. L.; Popov, A. G.; Ivanova, I. I. Sulfur-33 isotope tracing of the hydrodesulfurization process: Insights into the reaction mechanism, catalyst characterization and improvement. Angew. Chem., Int. Ed. 2017, 56, 10872–10876.

    CAS  Google Scholar 

  20. Nielsen, L. P.; Christensen, S. V.; Topsøe, H.; Clausen, B. S. Changes in metal-sulfur bond energy in promoted and unpromoted molybdenum catalysts. Catal. Lett. 2000, 67, 81–85.

    CAS  Google Scholar 

  21. Xu, J. D.; Guo, Y. F.; Huang, T. T.; Fan, Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization. Appl. Catal. B: Environ. 2019, 244, 385–395.

    CAS  Google Scholar 

  22. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

    CAS  Google Scholar 

  23. Kang, X.; Liu, J. C.; Tian, C. G.; Wang, D. X.; Li, Y. R.; Zhang, H. Y.; Cheng, X. S.; Wu, A. P.; Fu, H. G. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 2020, 13, 882–890.

    CAS  Google Scholar 

  24. Wang, X. L.; Mei, J. L.; Zhao, Z.; Zheng, P.; Chen, Z. T.; Gao, D. W.; Fu, J. Y.; Fan, J. Y.; Duan, A. J.; Xu, C. M. Self-assembly of hierarchically porous ZSM-5/SBA-16 with different morphologies and its high isomerization performance for hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene. ACS Catal. 2018, 8, 1891–1902.

    CAS  Google Scholar 

  25. Wang, X. L.; Zhao, Z.; Zheng, P.; Chen, Z. T.; Duan, A. J.; Xu, C. M.; Jiao, J. Q.; Zhang, H. L.; Cao, Z. K.; Ge, B. H. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. J. Catal. 2016, 344, 680–691.

    CAS  Google Scholar 

  26. López-Benítez, A.; Berhault, G.; Guevara-Lara, A. Addition of manganese to alumina and its influence on the formation of supported NiMo catalysts for dibenzothiophene hydrodesulfurization application. J. Catal. 2016, 344, 59–76.

    Google Scholar 

  27. Lai, W. K.; Chen, Z.; Zhu, J. P.; Yang, L. F.; Zheng, J. B.; Yi, X. D.; Fang, W. P. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale 2016, 8, 3823–3833.

    CAS  Google Scholar 

  28. Hajjar, Z.; Kazemeini, M.; Rashidi, A.; Soltanali, S. Hydrodesulfurization catalysts based on carbon nanostructures: A review. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 557–569.

    CAS  Google Scholar 

  29. Dugulan, A. I.; Van Veen, J. A. R.; Hensen, E. J. M. On the structure and hydrotreating performance of carbon-supported CoMo- and NiMo-sulfides. Appl. Catal. B: Environ. 2013, 142–143, 178–186.

    Google Scholar 

  30. Fu, W. Q.; Zhang, L.; Tang, T. D.; Ke, Q. P.; Wang, S.; Hu, J. B.; Fang, G. Y.; Li, J. X.; Xiao, F. S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. J. Am. Chem. Soc. 2011, 133, 15346–15349.

    CAS  Google Scholar 

  31. Duan, A. J.; Li, T. S.; Zhao, Z.; Liu, B. J.; Zhou, X. F.; Jiang, G. Y.; Liu, J.; Wei, Y. C.; Pan, H. F. Synthesis of hierarchically porous L-KIT-6 silica-alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl. Catal. B: Environ. 2015, 165, 763–773.

    CAS  Google Scholar 

  32. Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

    CAS  Google Scholar 

  33. Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4− clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci. 2014, 7, 1939–1949.

    CAS  Google Scholar 

  34. Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

    CAS  Google Scholar 

  35. Ryaboshapka, D.; Piccolo, L.; Aouine, M.; Bargiela, P.; Briois, V.; Afanasiev, P. Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity. Appl. Catal. B: Environ. 2022, 302, 120831.

    CAS  Google Scholar 

  36. Wang, D. X.; Kang, X.; Gu, Y.; Zhang, H. Y.; Liu, J. C.; Wu, A. P.; Yan, H. J.; Tian, C. G.; Fu, H. G. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts. ACS Catal. 2020, 10, 10449–10458.

    CAS  Google Scholar 

  37. Liu, W.; Luo, C.; Zhang, S. W.; Zhang, B.; Ma, J. B.; Wang, X. L.; Liu, W. H.; Li, Z. J.; Yang, Q. H.; Lv, W. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 7491–7499.

    CAS  Google Scholar 

  38. Ma, G. Y.; Zhou, Y. L.; Wang, Y. Y.; Feng, Z. Y.; Yang, J. N,P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Res. 2021, 14, 3523–3530.

    CAS  Google Scholar 

  39. Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.

    Google Scholar 

  40. Zavala-Sanchez, L. A.; Portier, X.; Maugé, F.; Oliviero, L. Promoter location on NiW/Al2O3 sulfide catalysts: Parallel study by IR/CO spectroscopy and high-resolution STEM-HAADF microscopy. ACS Catal. 2020, 10, 6568–6578.

    CAS  Google Scholar 

  41. Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

    CAS  Google Scholar 

  42. Zhou, W. W.; Liu, M. F.; Zhang, Q.; Wei, Q.; Ding, S. J.; Zhou, Y. S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. ACS Catal. 2017, 7, 7665–7679.

    CAS  Google Scholar 

  43. Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 11, 11733–11740.

    Google Scholar 

  44. Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

    Google Scholar 

  45. Vít, Z.; Gulková, D.; Kaluža, L.; Kupčík, J. Pd-Pt catalysts on mesoporous SiO2-Al2O3 with superior activity for HDS of 4,6-dimethyldibenzothiophene: Effect of metal loading and support composition. Appl. Catal. B: Environ. 2011, 179, 44–53.

    Google Scholar 

  46. Yang, K. X.; Chen, X.; Qi, J.; Bai, Z. X.; Zhang, L. L.; Liang, C. H. A highly efficient and sulfur-tolerant Pd2Si/CNTs catalyst for hydrodesulfurization of dibenzothiophenes. J. Catal. 2019, 369, 363–371.

    CAS  Google Scholar 

  47. Gao, D. W.; Duan, A. J.; Zhang, X.; Zhao, Z.; E, H.; Li, J. M.; Wang, H. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS. Appl. Catal. B: Environ. 2015, 165, 269–284.

    CAS  Google Scholar 

  48. Chowdari, R. K.; De León, J. N. D.; Fuentes-Moyado, S. Template-free, facile synthesis of nickel promoted multi-walled MoS2 & nano-bricks containing hierarchical MoS2 nanotubes from the bulk NiMo oxide. Appl. Catal. B: Environ. 2021, 298, 120617.

    CAS  Google Scholar 

  49. Varakin, A. N.; Mozhaev, A. V.; Pimerzin, A. A.; Nikulshin, P. A. Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method. Appl. Catal. B: Environ. 2018, 238, 498–508.

    CAS  Google Scholar 

  50. Li, H.; Liu, J. J.; Li, J. C.; Hu, Y. F.; Wang, W. N.; Yuan, D. L.; Wang, Y. D.; Yang, T.; Li, L.; Sun, H. X. et al. Promotion of the inactive iron sulfide to an efficient hydrodesulfurization catalyst. ACS Catal. 2017, 7, 4805–4816.

    CAS  Google Scholar 

  51. Chowdari, R. K.; De León, J. N. D.; Fuentes-Moyado, S. Single step and template-free synthesis of Dandelion flower-like core-shell architectures of metal oxide microspheres: Influence of sulfidation on particle morphology & hydrodesulfurization performance. Appl. Catal. B: Environ. 2020, 277, 119213.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this research by the National Key Research and Development Program of China (No. 2018YFE0201704), the National Natural Science Foundation of China (Nos. U20A20250, 91961111, 21901064, and 22171074), the Natural Science Foundation of Heilongjiang Province (No. ZD2021b003), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2018013). The project was also supported financially by the Opening Project of Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chungui Tian or Honggang Fu.

Electronic Supplementary Material

12274_2022_4375_MOESM1_ESM.pdf

The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, L., Jiao, Y. et al. The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization. Nano Res. 15, 7052–7062 (2022). https://doi.org/10.1007/s12274-022-4375-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4375-6

Keywords

Navigation