Skip to main content
Log in

Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

This article has been updated

Abstract

The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide (TMD) grains, particularly whether the TMDs will grow into wafer-scale single-crystal or anisotropic nanoribbons. Hereby, we investigate the growth behaviours of the MoS2 nanograins on (0001) and (\(1\bar 102\)) sapphire substrates. On one hand, the step edges formed on the (0001) surface after thermal treatment are found to promote the macroscopic aggregation of MoS2 nanograins and to form unidirectional large triangular islands along with the <\(11\bar 20\)> steps in the annealing process, while on the pristine (0001) surface, the MoS2 nanograins grow into a random network-like pattern. Moreover, oxygen treatment on the substrate can further enhance the growth of MoS2 nanograins. Transmission electron microscopy and fast Fourier transform patterns reveal that the substrate could modulate the orientation of MoS2 nanograins during their growing process. On the other hand, the MoS2 nanograins on the (\(1\bar 102\)) surface could self-assemble into one-dimensional nanoribbons due to the strong structural anisotropy of the substrate. In addition, the ratio of Raman intensities for peaks that correspond to the \({\rm{E}}_{2{\rm{g}}}^1\) and A1g phonon modes shows a linear relationship with the grain size due to the change of the “phonon confinement”. Moreover, new peaks located at 226 and 280 cm−1 can be observed in the off-resonant and resonant Raman spectra for the MoS2 nanograin samples, respectively, which can be attributed to the scatterings from the edges of as-fabricated MoS2 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 June 2022

    The word "nanograins" in the article title was captured incorrect during initial upload.

References

  1. Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. L.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.

    Article  Google Scholar 

  2. Wang, D. S.; Zhou, Y.; Zhang, H.; Zhang, R. F.; Dong, H. Y.; Xu, R.; Cheng, Z. H.; He, Y. H.; Wang, Z. Y. Wafer-scale growth of pristine and doped monolayer MoS2 films for electronic device applications. Inorg. Chem. 2020, 59, 17356–17363.

    Article  CAS  Google Scholar 

  3. Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 2017, 17, 644–651.

    Article  CAS  Google Scholar 

  4. Amani, M.; Burke, R. A.; Ji, X.; Zhao, P.; Lien, D. H.; Taheri, P.; Ahn, G. H.; Kirya, D.; Ager III, J. W.; Yablonovitch, E. et al. High luminescence efficiency in MoS2 grown by chemical vapor deposition. ACS Nano 2016, 10, 6535–6541.

    Article  CAS  Google Scholar 

  5. He, J. X.; Qian, T.; Cai, C.; Xiang, X.; Li, S. A.; Zu, X. T. Nickel-based selenides with a fractal structure as an excellent bifunctional electrocatalyst for water splitting. Nanomaterials 2022, 12, 281.

    Article  CAS  Google Scholar 

  6. Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

    Article  CAS  Google Scholar 

  7. Ma, Z. P.; Wang, S. Y.; Deng, Q. X.; Hou, Z. F.; Zhou, X.; Li, X. B.; Cui, F. F.; Si, H. Y.; Zhai, T. Y.; Xu, H. Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on twofold symmetry a-plane sapphire. Small 2020, 16, 2000596.

    Article  CAS  Google Scholar 

  8. Aljarb, A.; Fu, J. H.; Hsu, C. C.; Chuu, C. P.; Wan, Y.; Hakami, M.; Naphade, D. R.; Yengel, E.; Lee, C. J.; Brems, S. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 2020, 19, 1300–1306.

    Article  CAS  Google Scholar 

  9. Luo, C.; Wang, C. L.; Wu, X.; Zhang, J.; Chu, J. H. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.

    Article  Google Scholar 

  10. Hansen, L. P.; Johnson, E.; Brorson, M.; Helveg, S. Growth mechanism for single- and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 2014, 118, 22768–22773.

    Article  CAS  Google Scholar 

  11. Goodman, E. D.; Schwalbe, J. A.; Cargnello, M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catal. 2017, 7, 7156–7173.

    Article  CAS  Google Scholar 

  12. Doll, J. D.; Voter, A. F. Recent developments in the theory of surface diffusion. Annu. Rev. Phys. Chem. 1987, 38, 413–431.

    Article  CAS  Google Scholar 

  13. Bertrand, P. A. Surface-phonon dispersion of MoS2. Phys. Rev. B 1991, 44, 5745–5749.

    Article  CAS  Google Scholar 

  14. Gołasa, K.; Grzeszczyk, M.; Leszczyński, P.; Faugeras, C.; Nicolet, A. A. L.; Wysmołek, A.; Potemski, M.; Babiński, A. Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 2014, 104, 092106.

    Article  Google Scholar 

  15. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  16. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  17. Molina-Sánchez, A.; Hummer, K.; Wirtz, L. Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 2015, 70, 554–586.

    Article  Google Scholar 

  18. Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44, 92–96.

    Article  CAS  Google Scholar 

  19. Chen, J. M.; Wang, C. S. Second order Raman spectrum of MoS2. Solid State Commun. 1974, 14, 857–860.

    Article  CAS  Google Scholar 

  20. Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

    Article  Google Scholar 

  21. Luo, J. L.; Zheng, Z.; Yan, S. K.; Morgan, M.; Zu, X. T.; Xiang, X.; Zhou, W. L. Photocurrent enhanced in UV-vis-NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo-phototronic effect. ACS Photonics 2020, 7, 1461–1467.

    Article  CAS  Google Scholar 

  22. Cai, C.; Han, S. B.; Zhang, X. T.; Yu, J. X.; Xiang, X.; Yang, J.; Qiao, L.; Zu, X. T.; Chen, Y. Z.; Li, S. A. Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets. RSC Adv. 2022, 12, 6205–6213.

    Article  CAS  Google Scholar 

  23. Wang, S. Y.; Huang, J. K.; Li, M. Y.; Azam, A.; Zu, X. T.; Qiao, L.; Yang, J.; Li, S. Growth of high-quality monolayer transition metal dichalcogenide nanocrystals by chemical vapor deposition and their photoluminescence and electrocatalytic properties. ACS Appl. Mater. Interfaces 2021, 13, 47962–47971.

    Article  CAS  Google Scholar 

  24. Hu, S. L.; Li, W. X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360–1365.

    Article  CAS  Google Scholar 

  25. José-Yacamán, M.; Gutierrez-Wing, C.; Miki, M.; Yang, D. Q.; Piyakis, K. N.; Sacher, E. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 2005, 109, 9703–9711.

    Article  Google Scholar 

  26. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

    Article  CAS  Google Scholar 

  27. Somorjai, G. A. Modern surface science and surface technologies: An introduction. Chem. Rev. 1996, 96, 1223–1236.

    Article  CAS  Google Scholar 

  28. Kim, M.; Kang, K. M.; Wang, Y.; Park, H. H. N-doped Al2O3 thin films deposited by atomic layer deposition. Thin Solid Films 2018, 660, 657–662.

    Article  CAS  Google Scholar 

  29. Ahmad, R.; Srivastava, R.; Yadav, S.; Singh, D.; Gupta, G.; Chand, S.; Sapra, S. Functionalized molybdenum disulfide nanosheets for 0D-2D hybrid nanostructures: Photoinduced charge transfer and enhanced photoresponse. J. Phys. Chem. Lett. 2017, 8, 1729–1738.

    Article  CAS  Google Scholar 

  30. Richter, H.; Wang, Z. P.; Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981, 39, 625–629.

    Article  CAS  Google Scholar 

  31. Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

    Article  Google Scholar 

  32. Blanco, É.; Afanasiev, P.; Berhault, G.; Uzio, D.; Loridant, S. Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles. C. R. Chim. 2016, 19, 1310–1314.

    Article  CAS  Google Scholar 

  33. Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883.

    Article  CAS  Google Scholar 

  34. Carvalho, B. R.; Wang, Y. X.; Mignuzzi, S.; Roy, D.; Terrones, M.; Fantini, C.; Crespi, V. H.; Malard, L. M.; Pimenta, M. A. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 2017, 8, 14670.

    Article  Google Scholar 

  35. Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Neto, A. H. C.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S. Edge phonons in black phosphorus. Nat. Commun. 2016, 7, 12191.

    Article  CAS  Google Scholar 

  36. Guo, Y.; Zhang, W. X.; Wu, H. C.; Han, J. F.; Zhang, Y. L.; Lin, S. H.; Liu, C. R.; Xu, K.; Qiao, J. S.; Ji, W. et al. Discovering the forbidden Raman modes at the edges of layered materials. Sci. Adv. 2018, 4, eaau6252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the Australian Research Council Discovery Program (No. DP190103661).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jack Yang or Sean Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, N., Li, M. et al. Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate. Nano Res. 15, 7646–7654 (2022). https://doi.org/10.1007/s12274-022-4373-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4373-8

Keywords

Navigation