Skip to main content
Log in

A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing a highly efficient system for solar steam generation (SSG) using a straightforward and eco-friendly method to harvest freshwater is fascinating but challenging. Here, we stir the mixture of brewed tea and HAuCl4 to prepare Au nanoflowers, possessing broad wavelength light absorption and excellent photothermal effects. After freeze-drying the mixture of Au nanoflowers, cellulose nanocrystals (CNCs), and aqueous polyurethane (PU) emulsion, we obtain three-dimensional (3D) porous structures (CNC-PU-Au) for SSG. The whole process does not involve any sophisticated procedure or produce detrimental by-products. The evaporation rates are 2.24 kg·m−2·h−1 for pure water and 2.18 kg·m−2·h−1 for seawater using CNC-PU-Au under one sun. The solar energy conversion efficiency is up to 90.92% under one sun illumination. Besides, CNC-PU-Au shows self-driven salt resistance and durability. In outdoors application for seawater desalination, the maximum evaporation rate can maintain at 2.19 kg·m−2·h−1 in spring and 3.42 kg·m−2·h−1 in summer. These unique features promise the utility of CNC-PU-Au in the ecofriendly water treatment industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernauer, T.; Böhmelt, T. International conflict and cooperation over freshwater resources. Nat. Sustain. 2020, 3, 350–356.

    Article  Google Scholar 

  2. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

    Article  Google Scholar 

  3. Service, R. F. Desalination freshens up. Scinnee 0006, 313, 1088–1090.

    Google Scholar 

  4. Engineering ToolBox, (2010). Water-Heat of Vaporization [online]. Available at: https://www.engineeringtoolbox.com/water-properties-d_1573.html [Accessed Mar 31, 2022].

  5. Blanco, J.; Malato, S.; Fernández-Ibañez, P.; Alarcón, D.; Gernjak, W.; Maldonado, M. I. Review of feasible solar energy applications to water processes. Renew. Sust. Energy Rev. 2009, 13, 1437–1445.

    Article  CAS  Google Scholar 

  6. Sahu, B. K. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sust. Energy Rev. 2015, 43, 621–634.

    Article  Google Scholar 

  7. Ohmura, A.; Wild, M. Is the hydrological cycle accelerating? Science 2002, 298, 1345–1346.

    Article  CAS  Google Scholar 

  8. Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

    Article  Google Scholar 

  9. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  10. Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

    Article  CAS  Google Scholar 

  11. Zhao, L. Y.; Wang, L.; Shi, J. D.; Hou, X. Y.; Wang, Q.; Zhang, Y.; Wang, Y.; Bai, N. N.; Yang, J. L.; Zhang, J. M. et al. Shape-programmable interfacial solar evaporator with salt-precipitation monitoring function. ACS Nano 2021, 15, 5752–5761.

    Article  CAS  Google Scholar 

  12. Liu, H. W.; Chen, C. J.; Wen, H.; Guo, R. X.; Williams, N. A.; Wang, B. D.; Chen, F. J.; Hu, L. B. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 2018, 6, 18839–18846.

    Article  CAS  Google Scholar 

  13. Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887.

    Article  CAS  Google Scholar 

  14. Li, H. X.; Zhu, W.; Li, M.; Li, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 2021, 33, 2102258.

    Article  CAS  Google Scholar 

  15. Li, H. X.; Wen, H. F.; Li, J.; Huang, J. C.; Wang, D.; Tang, B. Z. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 26033–26040.

    Article  CAS  Google Scholar 

  16. Li, H. X.; Wen, H. F.; Zhang, Z. J.; Song, N.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Reverse thinking of the aggregation-induced emission principle: Amplifying molecular motions to boost photothermal efficiency of nanofibers. Angew. Chem., Int. Ed. 2020, 59, 20371–20375.

    Article  CAS  Google Scholar 

  17. Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854–3863.

    Article  CAS  Google Scholar 

  18. Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025–3032.

    Article  CAS  Google Scholar 

  19. He, S. L.; Zhu, G. S.; Sun, Z. C.; Wang, J. D.; Hui, P.; Zhao, P. H.; Chen, W. W.; Jiang, X. Y. 2D AuPd alloy nanosheets: One-step synthesis as imaging-guided photonic nano-antibiotics. Nanoscale Adv. 2020, 2, 3550–3560.

    Article  CAS  Google Scholar 

  20. Zhong, Y.; Ma, S.; Chen, K.; Wang, P. F.; Qiu, Y. H.; Liang, S.; Zhou, L.; Chen, Y. W.; Wang, Q. Q. Controlled growth of plasmonic heterostructures and their applications. Sci. China Mater. 2020, 63, 1398–1417.

    Article  Google Scholar 

  21. Shin, D.; Kang, G. M.; Gupta, P.; Behera, S.; Lee, H.; Urbas, A. M.; Park, W.; Kim, K. Thermoplasmonic and photothermal metamaterials for solar energy applications. Adv. Opt. Mater. 2018, 6, 1800317.

    Article  Google Scholar 

  22. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

    Article  Google Scholar 

  23. Li, Y. P.; Fan, J.; Wang, R.; Shou, W.; Wang, L.; Liu, Y. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation. J. Mater. Chem. A 2021, 9, 2248–2258.

    Article  CAS  Google Scholar 

  24. Chen, T. J.; Wu, Z. Z.; Liu, Z. Y.; Aladejana, J. T.; Wang, X. D.; Niu, M.; Wei, Q. H.; Xie, Y. Q. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 19511–19518.

    Article  CAS  Google Scholar 

  25. Sun, Z. Z.; Li, W. Z.; Song, W. L.; Zhang, L. C.; Wang, Z. K. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: Ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. J. Mater. Chem. A 2020, 8, 349–357.

    Article  CAS  Google Scholar 

  26. Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

    Article  Google Scholar 

  27. Boott, C. E.; Tran, A.; Hamad, W. Y.; MacLachlan, M. J. Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem., Int. Ed. 2020, 59, 226–231.

    Article  CAS  Google Scholar 

  28. Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Gröschel, A. H.; Rojas, O. J.; Ikkala, O. Advanced materials through assembly of nanocelluloses. Adv. Mater. 2018, 30, 1703779.

    Article  Google Scholar 

  29. Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Chen, W. S.; Wu, Y. Q.; Yu, H. P. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, 2000619.

    Article  CAS  Google Scholar 

  30. De France, K.; Zeng, Z. H.; Wu, T. T.; Nyström, G. Functional materials from nanocellulose: Utilizing structure-property relationships in bottom-up fabrication. Adv. Mater. 2021, 33, 2000657.

    Article  CAS  Google Scholar 

  31. Jia, Y. X.; Guo, Y. M.; Wang, S. W.; Chen, W. W.; Zhang, J. J.; Zheng, W. S.; Jiang, X. Y. Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. Nanoscale 2017, 9, 9811–9817.

    Article  CAS  Google Scholar 

  32. Harbowy, M. E.; Balentine, D. A.; Davies, A. P.; Cai, Y. Tea chemistry. Crit. Rev. Plant Sci. 1997, 16, 415–480.

    Article  CAS  Google Scholar 

  33. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  CAS  Google Scholar 

  34. World Health Organization. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. WHO: Genève, 2017. https://www.whp.ibt/publications/i/item/9789241549950. [Accessed Mar 31, 2022].

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (No. 2020B1515020011), the National Natural Science Foundation of China (Nos. 22074094, 21801169, and 22005195), and China Postdoctoral Science Foundation (No. 2020M672797). We also thank the Instrumental Analysis Center of Shenzhen University (Lihu campus) for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoxuan Li, Dong Wang or Wenwen Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Jing, G., Xu, G. et al. A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Res. 15, 6705–6712 (2022). https://doi.org/10.1007/s12274-022-4269-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4269-7

Keywords

Navigation