Skip to main content
Log in

Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ferroelectric field-effect transistors (FeFET) with nondestructive readout capability have emerged as an attractive candidate for next-generation nonvolatile memory technology. Herein, we demonstrate ferroelectric-gated nonvolatile memory featuring a top gate architecture by combining multi-layer ReS2 with ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films. The ReS2 FeFET using hBN as substrate shows a large memory window of ∼ 30 V. Repeated write/erase operations are successfully performed by applying pulse voltage of ±25 V with 1 ms width to the ferroelectric P(VDF-TrFE), and an ultra-high write/erase ratio of ∼ 107 can be achieved. Furthermore, the ReS2 FeFET shows stable data retention capability of longer than 2,000 s and reliable endurance of greater than 2,000 cycles. These characteristics highlight that such ferroelectric-gated nonvolatile memory has great potential in future non-volatile memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gantz, J.; Reinsel, D. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far East. IDC iView: IDC Analyze the future [online] 2012, 2007, https://it4sec.org/article/digital-universe-2020-big-data-bigger-digital-shadows-and-biggestgrowth-far-east (accessed Oct. 15, 2021)

  2. Xia, X.; Fu, J. J.; Zi, Y. L. A universal standardized method for output capability assessment of nanogenerators. Nat. Commun. 2019, 10, 4428.

    Article  CAS  Google Scholar 

  3. Singh, R.; Singh, E.; Nalwa, H. S. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 2017, 7, 48597–48630.

    Article  CAS  Google Scholar 

  4. Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156.

    Article  CAS  Google Scholar 

  5. Sun, L. F.; Zhang, Y. S.; Han, G.; Hwang, G.; Jiang, J. B.; Joo, B.; Watanabe, K.; Taniguchi, T.; Kim, Y. M.; Yu, W. J. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 2019, 10, 3161.

    Article  CAS  Google Scholar 

  6. Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

    Article  CAS  Google Scholar 

  7. Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.

    Article  CAS  Google Scholar 

  8. Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.

    Article  CAS  Google Scholar 

  9. Chen, E.; Apalkov, D.; Diao, Z.; Driskill-Smith, A.; Druist, D.; Lottis, D.; Nikitin, V.; Tang, X.; Watts, S.; Wang, S. et al. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 2010, 46, 1873–1878.

    Article  CAS  Google Scholar 

  10. Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S. N. Spintronics based random access memory: A review. Mater. Today 2017, 20, 530–548.

    Article  Google Scholar 

  11. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36.

    Article  CAS  Google Scholar 

  12. Linn, E.; Rosezin, R.; Kügeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406.

    Article  CAS  Google Scholar 

  13. Kools, J. C. S. Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 1996, 32, 3165–3184.

    Article  CAS  Google Scholar 

  14. Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Magnetically engineered spintronic sensors and memory. Proc. IEEE 2003, 91, 661–680.

    Article  CAS  Google Scholar 

  15. Zheng, Y.; Ni, G. X.; Toh, C. T.; Zeng, M. G.; Chen, S. T.; Yao, K.; Özyilmaz, B. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 2009, 94, 163505.

    Article  CAS  Google Scholar 

  16. Sakai, S.; Takahashi, M. Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 2010, 3, 4950–4964.

    Article  CAS  Google Scholar 

  17. Park, N.; Kang, H.; Park, J.; Lee, Y.; Yun, Y.; Lee, J. H.; Lee, S. G.; Lee, Y. H.; Suh, D. Ferroelectric single-crystal gated graphene:hexagonal-BN/ferroelectric field-effect transistor. ACS Nano 2015, 9, 10729–10736.

    Article  CAS  Google Scholar 

  18. Mathews, S.; Ramesh, R.; Venkatesan, T.; Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 1997, 276, 238–240.

    Article  CAS  Google Scholar 

  19. Yurchuk, E.; Müller, J.; Paul, J.; Schlösser, T.; Martin, D.; Hoffmann, R.; Müeller, S.; Slesazeck, S.; Schröeder, U.; Boschke, R. et al. Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Trans. Electron Devices 2014, 61, 3699–3706.

    Article  CAS  Google Scholar 

  20. Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33, 917–978.

    Article  CAS  Google Scholar 

  21. Chen, Y.; Wang, X. D.; Wang, P.; Huang, H.; Wu, G. J.; Tian, B. B.; Hong, Z. C.; Wang, Y. T.; Sun, S.; Shen, H. et al. Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer. ACS Appl. Mater. Interfaces 2016, 8, 32083–32088.

    Article  CAS  Google Scholar 

  22. Zhou, C. J.; Chai, Y. Ferroelectric-gated two-dimensional-material-based electron devices. Adv. Electron. Mater. 2017, 3, 1600400.

    Article  CAS  Google Scholar 

  23. Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. Q. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43–50.

    Article  CAS  Google Scholar 

  24. Nguyen, A.; Sharma, P.; Scott, T.; Preciado, E.; Klee, V.; Sun, D. Z.; Lu, I. H.; Barroso, D.; Kim, S.; Shur, V. Y. et al. Toward ferroelectric control of monolayer MoS2. Nano Lett. 2015, 15, 3364–3369.

    Article  CAS  Google Scholar 

  25. Hu, W. N.; Sheng, Z.; Hou, X.; Chen, H. W.; Zhang, Z. X.; Zhang, D. W.; Zhou, P. Ambipolar 2D semiconductors and emerging device applications. Small Methods 2021, 5, 2000837.

    Article  CAS  Google Scholar 

  26. Ko, C.; Lee, Y.; Chen, Y. B.; Suh, J.; Fu, D. Y.; Suslu, A.; Lee, S.; Clarkson, J. D.; Choe, H. S.; Tongay, S. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv. Mater. 2016, 28, 2923–2930.

    Article  CAS  Google Scholar 

  27. Liu, L.; Wu, L. M.; Wang, A. W.; Liu, H. T.; Ma, R. S.; Wu, K.; Chen, J. C.; Zhou, Z.; Tian, Y.; Yang, H. T. et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity. Nano Lett. 2020, 20, 6666–6673.

    Article  CAS  Google Scholar 

  28. Lee, Y. T.; Kwon, H.; Kim, J. S.; Kim, H. H.; Lee, Y. J.; Lim, J. A.; Song, Y. W.; Yi, Y.; Choi, W. K.; Hwang, D. K. et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. ACS Nano 2015, 9, 10394–10401.

    Article  CAS  Google Scholar 

  29. Wang, X. D.; Liu, C. S.; Chen, Y.; Wu, G. J.; Yan, X.; Huang, H.; Wang, P.; Tian, B. B.; Hong, Z. C.; Wang, Y. T. et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater. 2017, 4, 025036.

    Article  CAS  Google Scholar 

  30. Cui, Q. N.; Zhao, H. Coherent control of nanoscale ballistic currents in transition metal dichalcogenide ReS2. ACS Nano 2015, 9, 3935–3941.

    Article  CAS  Google Scholar 

  31. Corbet, C. M.; McClellan, C.; Rai, A.; Sonde, S. S.; Tutuc, E.; Banerjee, S. K. Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano 2015, 9, 363–370.

    Article  CAS  Google Scholar 

  32. Li, X. B.; Chen, C.; Yang, Y.; Lei, Z. B.; Xu, H. 2D re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

    Article  CAS  Google Scholar 

  33. Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

    Article  CAS  Google Scholar 

  34. Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

    Article  CAS  Google Scholar 

  35. Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.

    Article  CAS  Google Scholar 

  36. Yu, W.; Wang, Z. S.; Zhao, X. X.; Wang, J. Y.; Herng, T. S.; Ma, T.; Zhu, Z. Y.; Ding, J.; Eda, G.; Pennycook, S. J. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 2020, 30, 2003057.

    Article  CAS  Google Scholar 

  37. Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

    Article  CAS  Google Scholar 

  38. Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

    Article  CAS  Google Scholar 

  39. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

    Article  CAS  Google Scholar 

  40. Raagulan, K.; Kim, B. M.; Chai, K. Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 2020, 10, 702.

    Article  CAS  Google Scholar 

  41. Liu, L.; Hou, X.; Zhang, H.; Wang, J. L.; Zhou, P. Ferroelectric field-effect transistors for logic and in-situ memory applications. Nanotechnology 2020, 31, 424007.

    Article  CAS  Google Scholar 

  42. Konno, A.; Shiga, K.; Suzuki, H.; Koda, T.; Ikeda, S. Polarization reversal in ferroelectric fluoro-polymers. Jpn. J. Appl. Phys. 2000, 39, 5676–5678.

    Article  CAS  Google Scholar 

  43. Lee, K. H.; Lee, G.; Lee, K.; Oh, M. S.; Im, S.; Yoon, S. M. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv. Mater. 2009, 21, 4287–4291.

    Article  CAS  Google Scholar 

  44. Su, M.; Yang, Z. Y.; Liao, L.; Zou, X. M.; Ho, J. C.; Wang, J. L.; Wang, J. L.; Hu, W. D.; Xiao, X. H.; Jiang, C. Z. et al. Side-gated In2O3 nanowire ferroelectric FETs for high-performance nonvolatile memory applications. Adv. Sci. 2016, 3, 1600078.

    Article  CAS  Google Scholar 

  45. Kang, S. J.; Bae, I.; Park, Y. J.; Park, T. H.; Sung, J.; Yoon, S. C.; Kim, K. H.; Choi, D. H.; Park, C. Non-volatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on a single-crystalline tri-isopropylsilylethynyl pentacene field-effect transistor. Adv. Funct. Mater. 2009, 19, 1609–1616.

    Article  CAS  Google Scholar 

  46. Kang, S. J.; Bae, I.; Shin, Y. J.; Park, Y. J.; Huh, J.; Park, S. M.; Kim, H. C.; Park, C. Nonvolatile polymer memory with nanoconfinement of ferroelectric crystals. Nano Lett. 2011, 11, 138–144.

    Article  CAS  Google Scholar 

  47. Raghavan, S.; Stolichnov, I.; Setter, N.; Heron, J. S.; Tosun, M.; Kis, A. Long-term retention in organic ferroelectric-graphene memories. Appl. Phys. Lett. 2012, 100, 023507.

    Article  CAS  Google Scholar 

  48. Lee, H. S.; Min, S. W.; Park, M. K.; Lee, Y. T.; Jeon, P. J.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 2012, 8, 3111–3115.

    Article  CAS  Google Scholar 

  49. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

    Article  CAS  Google Scholar 

  50. Kinoshita, K.; Moriya, R.; Onodera, M.; Wakafuji, Y.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 2019, 3, 22.

    Article  Google Scholar 

  51. Onodera, M.; Masubuchi, S.; Moriya, R.; Machida, T. Assembly of van der Waals heterostructures: Exfoliation, searching, and stacking of 2D materials. Jpn. J. Appl. Phys. 2020, 59, 010101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Projects of China (Nos. 2016YFA0202300 and 2018FYA0305800), National Natural Science Foundation of China (Nos. 61888102 and 51772087), Strategic Priority Research Program of Chinese Academy of Sciences (CAS, No. XDB30000000), Youth Innovation Promotion Association of CAS (No. Y201902), and CAS Project for Young Scientists in Basic Research (No. YSBR-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Bao or Zhihui Qin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, H., Wu, Q. et al. Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory. Nano Res. 15, 5443–5449 (2022). https://doi.org/10.1007/s12274-022-4142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4142-8

Keywords

Navigation