Skip to main content
Log in

Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Water dissociation process is generally regarded as the rate-limiting step for alkaline hydrogen evolution reaction (HER), and severely inhibits the catalytic efficiency of Pt based catalysts. To overcome this problem, the in-situ constructed interfaces of Pt-Co alloy and amorphous cobalt oxide (CoOx) on the carbon powder are designed. The amorphous CoOx at Pt-Co/CoOx interfaces not only provide active sites for water dissociation to facilitate Volmer step, but also produce the strong electronic transfer with Pt-Co. Accordingly, the obtained interfacial catalysts exhibit outstanding alkaline HER performance with a Tafel slope of 29.3 mV·dec−1 and an ultralow overpotential of only 28 mV at 10 mA·cm−2. Density functional theory (DFT) reveals that the electronic accumulation on the interfacial Co atom in Pt-Co/CoOx constructing the novel active site for water dissociation. Compared to the Pt-Co, all of the energy barriers for water adsorption, water dissociation and hydrogen adsorption/desorption are reduced in Pt-Co/CoOx interfaces, suggesting a boosted HER kinetics for alkaline HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    Article  CAS  Google Scholar 

  2. He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

    Article  CAS  Google Scholar 

  3. Zhang, B.; Zhang, L. S.; Tan, Q. Y.; Wang, J. S.; Liu, J.; Wan, H. Z.; Miao, L.; Jiang, J. J. Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 2020, 13, 3007–3013.

    Article  CAS  Google Scholar 

  4. Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

    Article  CAS  Google Scholar 

  5. Lin, C. X.; Huang, Z. Q.; Zhang, Z. Y.; Zeng, T.; Chen, R. Z.; Tan, Y. Y.; Wu, W.; Mu, S. C.; Cheng, N. C. Structurally ordered Pt3Co nanoparticles anchored on n-doped graphene for highly efficient hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 16938–16945.

    Article  CAS  Google Scholar 

  6. Li, Z.; Feng, Y.; Liang, Y. L.; Cheng, C. Q.; Dong, C. K.; Liu, H.; Du, X. W. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 32, 1908521.

    Article  CAS  Google Scholar 

  7. Pu, Z. H.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Mu, S. C.; Zhao, W. Y.; Su, F. M.; Zhang, G. X.; Liao, S. J. et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 2020, 12, 21.

    Article  CAS  Google Scholar 

  8. Tan, Y. S.; Xie, R. K.; Zhao, S. Y.; Lu, X. K.; Liu, L. X.; Zhao, F. J.; Li, C. Z.; Jiang, H.; Chai, G. L.; Brett, D. J. L. et al. Facile fabrication of robust hydrogen evolution electrodes under high current densities via Pt@Cu interactions. Adv. Funct. Mater. 2021, 31, 2105579.

    Article  CAS  Google Scholar 

  9. Lu, J. J.; Zhang, L. S.; Jing, S. Y.; Luo, L.; Yin, S. B. Remarkably efficient PtRh alloyed with nanoscale WC for hydrogen evolution in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 5993–5999.

    Article  CAS  Google Scholar 

  10. Cai, H. R.; Xiong, L. F.; Wang, B.; Zhu, D. L.; Hao, H. J.; Yu, X. J.; Li, C.; Yang, S. C. N-doped CNT as electron transport promoter by bridging CoP and carbon cloth toward enhanced alkaline hydrogen evolution. Chem. Eng. J. 2022, 430, 132824.

    Article  CAS  Google Scholar 

  11. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  Google Scholar 

  12. Lu, Z. J.; Cao, Y. L.; Xie, J.; Hu, J. D.; Wang, K.; Jia, D. Z. Construction of Co2P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting. Chem. Eng. J. 2022, 430, 132877.

    Article  CAS  Google Scholar 

  13. Chen, Q.; Wei, B.; Wei, Y.; Zhai, P. B.; Liu, W.; Gu, X. K.; Yang, Z. L.; Zuo, J. H.; Zhang, R. F.; Gong, Y. J. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B Environ. 2022, 301, 120754.

    Article  CAS  Google Scholar 

  14. Lee, H.; Lim, J.; Lee, C.; Back, S.; An, K.; Shin, J. W.; Ryoo, R.; Jung, Y.; Park, J. Y. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles. Nat. Commun. 2018, 9, 2235.

    Article  CAS  Google Scholar 

  15. Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

    Article  CAS  Google Scholar 

  16. Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.

    Article  CAS  Google Scholar 

  17. Zhang, C. T.; Liu, Q.; Wang, P. Y.; Zhu, J. W.; Chen, D.; Yang, Y.; Zhao, Y. F.; Pu, Z. H.; Mu, S. C. Molybdenum carbide-PtCu nanoalloy heterostructures on MOF-derived carbon toward efficient hydrogen evolution. Small 2021, 17, 2104241.

    Article  CAS  Google Scholar 

  18. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

    Article  CAS  Google Scholar 

  19. Wang, Z. Q.; Ren, X.; Luo, Y. L.; Wang, L.; Cui, G. W.; Xie, F. Y.; Wang, H. J.; Xie, Y.; Sun, X. P. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018, 10, 12302–12307.

    Article  CAS  Google Scholar 

  20. Xu, W. J.; Chang, J. F.; Cheng, Y. G.; Liu, H. Q.; Li, J. F.; Ai, Y. J.; Hu, Z. A.; Zhang, X. Y.; Wang, Y. M.; Liang, Q. L. et al. A multistep induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 2022, 55, 965–971.

    Article  CAS  Google Scholar 

  21. Wang, P. T.; Shao, Q.; Guo, J.; Bu, L. Z.; Huang, X. Q. Promoting alkaline hydrogen evolution catalysis on p-decorated, Ni-segregated Pt-Ni-P nanowires via a synergetic cascade route. Chem. Mater. 2020, 32, 3144–3149.

    Article  CAS  Google Scholar 

  22. Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

    Article  CAS  Google Scholar 

  23. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

    Article  CAS  Google Scholar 

  24. Qin, R.; Hou, J. G.; Xu, C. X.; Yang, H. X.; Zhou, Q. X.; Chen, Z. Z.; Liu, H. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Res. 2020, 13, 2950–2957.

    Article  CAS  Google Scholar 

  25. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. in press, https://doi.org/10.1007/s12274-021-3794-0.

  26. Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

    Article  CAS  Google Scholar 

  27. Yu, X. W.; dos Santos, E. C.; White, J.; Salazar-Alvarez, G.; Pettersson, L. G. M.; Cornell, A.; Johnsson, M. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution utilizing an efficient MoOx/Pt catalyst. Small 2021, 17, 2104288.

    Article  CAS  Google Scholar 

  28. Zhou, M.; Li, H. F.; Long, A. C.; Zhou, B.; Lu, F.; Zhang, F. C.; Zhan, F.; Zhang, Z. X.; Xie, W. W.; Zeng, X. H. et al. Modulating 3d orbitals of Ni atoms on Ni-Pt edge sites enables highly-efficient alkaline hydrogen evolution. Adv. Energy Mater. 2021, 11, 2101789.

    Article  CAS  Google Scholar 

  29. Zhang, J. K.; Gao, Z.; Wang, S.; Wang, G. F.; Gao, X. F.; Zhang, B. Y.; Xing, S. F.; Zhao, S. C.; Qin, Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat. Commun. 2019, 10, 4166.

    Article  CAS  Google Scholar 

  30. Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B Environ. 2020, 276, 119165.

    Article  CAS  Google Scholar 

  31. Xu, Q. L.; Yu, T. Q.; Chen, J. L.; Qian, G. F.; Song, H. N.; Luo, L.; Chen, Y. L.; Liu, T. Y.; Wang, Y. Z.; Yin, S. B. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 16355–16363.

    Article  CAS  Google Scholar 

  32. Zhang, W.; Jiang, X.; Dong, Z. M.; Wang, J.; Zhang, N.; Liu, J.; Xu, G. R.; Wang, L. Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting. Adv. Funct. Mater. 2021, 31, 2107181.

    Article  CAS  Google Scholar 

  33. Zeng, J. S.; Zhang, L.; Zhou, Q.; Liao, L. L.; Qi, Y.; Zhou, H. Q.; Li, D. Y.; Cai, F. M.; Wang, H.; Tang, D. S. et al. Boosting alkaline hydrogen and oxygen evolution kinetic process of tungsten disulfide-based heterostructures by multi-site engineering. Small 2022, 18, 2104624.

    Article  CAS  Google Scholar 

  34. Lim, J.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D. et al. O. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Mater. 2020, 32, 517–524.

    Article  Google Scholar 

  35. Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. F. IrOx@In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.

    Article  CAS  Google Scholar 

  36. Yan, Y.; Liang, S.; Wang, X.; Zhang, M. Y.; Hao, S. M.; Cui, X.; Li, Z.; Lin, Z. Q. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e2110036118.

    Article  CAS  Google Scholar 

  37. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Article  CAS  Google Scholar 

  38. Wu, D. L.; Chen, D.; Zhu, J. W.; Mu, S. C. Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 2021, 17, 2102777.

    Article  CAS  Google Scholar 

  39. Xu, L.; Tian, Y. H.; Deng, D. J.; Li, H. P.; Zhang, D.; Qian, J. C.; Wang, S.; Zhang, J. M.; Li, H. N.; Sun, S. H. Cu nanoclusters/FeN4 amorphous composites with dual active sites in N-doped graphene for high-performance Zn-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 31340–31350.

    Article  CAS  Google Scholar 

  40. Wu, M. J.; Wei, Q. L.; Zhang, G. X.; Qiao, J. L.; Wu, M. X.; Zhang, J. H.; Gong, Q. J.; Sun, S. H. Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air batteries. Adv. Energy Mater. 2018, 8, 1801836.

    Article  CAS  Google Scholar 

  41. Hua, B.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J. L. A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254.

    Article  CAS  Google Scholar 

  42. Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

    Article  CAS  Google Scholar 

  43. Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx -decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustainable Chem. Eng. 2020, 8, 17520–17526.

    Article  CAS  Google Scholar 

  44. Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93-95, 665–670.

    Article  CAS  Google Scholar 

  45. Jiang, L. H.; Zhou, Z. H.; Li, W. Z.; Zhou, W. J.; Song, S. Q.; Li, H. Q.; Sun, G. Q.; Xin, Q. Effects of treatment in different atmosphere on Pt3Sn/C electrocatalysts for ethanol electro-oxidation. Energy Fuels 2004, 18, 866–871.

    Article  CAS  Google Scholar 

  46. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  CAS  Google Scholar 

  47. Jang, S. W.; Dutta, S.; Kumar, A.; Hong, Y. R.; Kang, H.; Lee, S.; Ryu, S.; Choi, W.; Lee, I. S. Holey Pt nanosheets on NiFe-hydroxide laminates: Synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 2020, 74, 10578–10588.

    Article  CAS  Google Scholar 

  48. Wang, M. J.; Xu, Y.; Peng, C. K.; Chen, S. Y.; Lin, Y. G.; Hu, Z. W.; Sun, L.; Ding, S. Y.; Pao, C. W.; Shao, Q. et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 16512–16518.

    Article  CAS  Google Scholar 

  49. Chen, W. S; Xue, J.; Bao, Y. F.; Feng, L. G. Surface engineering of nano-ceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chem. Eng. J. 2020, 381, 122752.

    Article  CAS  Google Scholar 

  50. Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

    Article  CAS  Google Scholar 

  51. Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2021, 2107597.

  52. Hu, S.; Goenaga, G.; Melton, C.; Zawodzinski, T. A.; Mukherjee, D. PtCo/CoOx nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B Environ. 2016, 182, 286–296.

    Article  CAS  Google Scholar 

  53. Lu, Z. J.; Xie, J.; Hu, J. D.; Wang, K.; Cao, Y. L. In situ replacement synthesis of Co@NCNT encapsulated CoPt3@Co2P heterojunction boosting methanol oxidation and hydrogen evolution. Small 2021, 17, 2104656.

    Article  CAS  Google Scholar 

  54. Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

    Article  CAS  Google Scholar 

  55. Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

    Article  CAS  Google Scholar 

  56. Zhang, L. J.; Jang, H.; Wang, Y.; Li, Z. J.; Zhang, W.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Exploring the dominant role of atomic- and nano-ruthenium as active sites for hydrogen evolution reaction in both acidic and alkaline media. Adv. Sci. 2021, 8, 2004516.

    Article  CAS  Google Scholar 

  57. Zhang, D. D.; Li, H. B.; Riaz, A.; Sharma, A.; Liang, W. S.; Wang, Y.; Chen, H. J.; Vora, K.; Yan, D.; Su, Z. et al. Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy Environ. Sci., in press, https://doi.org/10.1039/D1EE02013G.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21875039), the Project on the Integration of Industry-Education-Research of Fujian Province (No. 2021H6020), and Fujian province’s high level innovative and entrepreneurial talents (No. 50012709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niancai Cheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, W., Chen, R. et al. Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution. Nano Res. 15, 4958–4964 (2022). https://doi.org/10.1007/s12274-022-4128-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4128-6

Keywords

Navigation