Skip to main content
Log in

Investigation of electronic excited states in single-molecule junctions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The investigation of electronic excited states in single-molecule junctions not only provides platforms to reveal the photophysical and photochemical processes at the molecular level, but also brings opportunities for the development of single-molecule optoelectronic devices. Understanding the interaction mechanisms between molecules and nanocavities is essential to obtain on-demand properties in devices by artificial design, since molecules in junctions exhibit unique behaviors of excited states benefited from the structures of metallic nanocavities. Here, we review the excitation mechanisms involved in the interplay between molecules and plasmonic nanocavities, and reveal the influence of nanostructures on excited-state properties by demonstrating the differences in excited state decay processes. Furthermore, vibronic transitions of molecules between nanoelectrodes are also discussed, offering a new single-molecule characterization method. Finally, we provide the potential applications and challenges in single-molecule optoelectronic devices and the possible directions in exploring the underlying mechanisms of photophysical and photochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445.

    Article  CAS  Google Scholar 

  2. Lounis, B.; Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 2000, 407, 491–493.

    Article  CAS  Google Scholar 

  3. Qiu, X. H.; Nazin, G. V.; Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 2003, 299, 542–546.

    Article  CAS  Google Scholar 

  4. Xu, J. Y.; Zhu, X.; Tan, S. J.; Zhang, Y.; Li, B.; Tian, Y. Z.; Shan, H.; Cui, X. F.; Zhao, A. D.; Dong, Z. C. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 2021, 371, 818–822.

    Article  CAS  Google Scholar 

  5. Meng, L. N.; Xin, N.; Hu, C.; Wang, J. Y.; Gui, B.; Shi, J. J.; Wang, C.; Shen, C.; Zhang, G. Y.; Guo, H. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 2019, 10, 1450.

    Article  CAS  Google Scholar 

  6. Cao, S. Y.; Rosławska, A.; Doppagne, B.; Romeo, M.; Féron, M.; Chérioux, F.; Bulou, H.; Scheurer, F.; Schull, G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 2021, 13, 766–770.

    Article  CAS  Google Scholar 

  7. Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. Y.; Hong, W. J.; Guo, X. F.; Xiang, D. Towards single-molecule optoelectronic devices. Sci. China Chem. 2018, 61, 1368–1384.

    Article  CAS  Google Scholar 

  8. Galperin, M.; Nitzan, A. Molecular optoelectronics: The interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 2012, 14, 9421–9438.

    Article  CAS  Google Scholar 

  9. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  CAS  Google Scholar 

  10. Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 2016, 10, 274–280.

    Article  CAS  Google Scholar 

  11. Zhang, S. R.; Guo, C. Y.; Ni, L. F.; Hans, K. M.; Zhang, W. Q.; Peng, S. J.; Zhao, Z. K.; Guhr, D. C.; Qi, Z.; Liu, H. T. et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today 2021, 39, 101226.

    Article  CAS  Google Scholar 

  12. Darwish, N.; Aragonés, A. C.; Darwish, T.; Ciampi, S.; Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 2014, 14, 7064–7070.

    Article  CAS  Google Scholar 

  13. Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev. 2017, 117, 712–757.

    Article  CAS  Google Scholar 

  14. Arakawa, Y.; Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020, 7, 021309.

    Article  CAS  Google Scholar 

  15. Toninelli, C.; Gerhardt, I.; Clark, A. S.; Reserbat-Plantey, A.; Götzinger, S.; Ristanović, Z.; Colautti, M.; Lombardi, P.; Major, K. D.; Deperasiñska, I. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 2021, 20, 1615–1628.

    Article  CAS  Google Scholar 

  16. Atatüre, M.; Englund, D.; Vamivakas, N.; Lee, S. Y.; Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 2018, 3, 38–51.

    Article  CAS  Google Scholar 

  17. Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, 11823.

    Article  CAS  Google Scholar 

  18. Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

    Article  CAS  Google Scholar 

  19. Zheng, H. N.; Hou, S. J.; Xin, C. G.; Wu, Q. Q.; Jiang, F.; Tan, Z. B.; Zhou, X.; Lin, L. C.; He, W. X.; Li, Q. M. et al. Room-temperature quantum interference in single perovskite quantum dot junctions. Nat. Commun. 2019, 10, 5458.

    Article  CAS  Google Scholar 

  20. Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts. J. Am. Chem. Soc. 2011, 133, 9556–9563.

    Article  CAS  Google Scholar 

  21. Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X. J.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

    Article  CAS  Google Scholar 

  22. Li, Y. Q.; Buerkle, M.; Li, G. F.; Rostamian, A.; Wang, H.; Wang, Z. X.; Bowler, D. R.; Miyazaki, T.; Xiang, L. M.; Asai, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 2019, 18, 357–363.

    Article  CAS  Google Scholar 

  23. Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang, C.; Yaish, Y.; Petta, J. R.; Rinkoski, M.; Sethna, J. P.; Abruña, H. D.; McEuen, P. L. et al. Coulomb blockade and the kondo effect in single-atom transistors. Nature 2002, 417, 722–725.

    Article  CAS  Google Scholar 

  24. Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

    Article  CAS  Google Scholar 

  25. Cui, J. B.; Burghard, M.; Kern, K. Room temperature single electron transistor by local chemical modification of carbon nanotubes. Nano Lett. 2002, 2, 117–120.

    Article  CAS  Google Scholar 

  26. Sasaki, S.; De Franceschi, S.; Elzerman, J. M.; Van Der Wiel, W. G.; Eto, M.; Tarucha, S.; Kouwenhoven, L. P. Kondo effect in an integer-spin quantum dot. Nature 2000, 405, 764–767.

    Article  CAS  Google Scholar 

  27. Jeong, H.; Chang, A. M.; Melloch, M. R. The kondo effect in an artificial quantum dot molecule. Science 2001, 293, 2221–2223.

    Article  CAS  Google Scholar 

  28. Xing, Y. Q.; Chen, H.; Hu, B.; Ye, Y. H.; Hofer, W. A.; Gao, H. J. Reversible switching of kondo resonance in a single-molecule junction. Nano Res. 2022, 15, 1466–1471.

    Article  CAS  Google Scholar 

  29. Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

    Article  Google Scholar 

  30. Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002.

    Article  CAS  Google Scholar 

  31. Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, 2013.

    Google Scholar 

  32. Kastrup, L.; Hell, S. W. Absolute optical cross section of individual fluorescent molecules. Angew. Chem., Int. Ed. 2004, 43, 6646–6649.

    Article  CAS  Google Scholar 

  33. Yang, B.; Chen, G.; Ghafoor, A.; Zhang, Y. F.; Zhang, Y.; Zhang, Y.; Luo, Y.; Yang, J. L.; Sandoghdar, V.; Aizpurua, J. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 2020, 14, 693–699.

    Article  CAS  Google Scholar 

  34. Akselrod, G. M.; Argyropoulos, C.; Hoang, T. B.; Ciraci, C.; Fang, C.; Huang, J. N.; Smith, D. R.; Mikkelsen, M. H. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840.

    Article  CAS  Google Scholar 

  35. Luo, X. G.; Tsai, D. P.; Gu, M.; Hong, M. H. Extraordinary optical fields in nanostructures: From sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. 2019, 48, 2458–2494.

    Article  CAS  Google Scholar 

  36. Li, J. F.; Li, C. Y.; Aroca, R. F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017, 46, 3962–3979.

    Article  CAS  Google Scholar 

  37. Yang, Y.; Liu, J. Y.; Feng, S.; Wen, H. M.; Tian, J. H.; Zheng, J. T.; Schöllhorn, B.; Amatore, C.; Chen, Z. N.; Tian, Z. Q. Unexpected current-voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted-MCBJ. Nano Res. 2016, 9, 560–570.

    Article  CAS  Google Scholar 

  38. Zhou, J. F.; Wang, K.; Xu, B. Q.; Dubi, Y. Photoconductance from exciton binding in molecular junctions. J. Am. Chem. Soc. 2018, 140, 70–73.

    Article  CAS  Google Scholar 

  39. Zang, Y. P.; Zou, Q.; Fu, T. R.; Ng, F.; Fowler, B.; Yang, J. J.; Li, H. X.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 2019, 10, 4482.

    Article  CAS  Google Scholar 

  40. Baumberg, J. J.; Aizpurua, J.; Mikkelsen, M. H.; Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678.

    Article  CAS  Google Scholar 

  41. Hugall, J. T.; Singh, A.; Van Hulst, N. F. Plasmonic cavity coupling. ACS Photonics 2018, 5, 43–53.

    Article  CAS  Google Scholar 

  42. Kuhnke, K.; Große, C.; Merino, P.; Kern, K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 2017, 117, 5174–5222.

    Article  CAS  Google Scholar 

  43. Baranov, D. G.; Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Shegai, T. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 2018, 5, 24–42.

    Article  CAS  Google Scholar 

  44. Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.

    Article  CAS  Google Scholar 

  45. Chikkaraddy, R.; Turek, V. A.; Kongsuwan, N.; Benz, F.; Carnegie, C.; Van De Goor, T.; De Nijs, B.; Demetriadou, A.; Hess, O.; Keyser, U. F. et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 2018, 18, 405–411.

    Article  CAS  Google Scholar 

  46. Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution δ/20. Appl. Phys. Lett. 1984, 44, 651–653.

    Article  Google Scholar 

  47. Kongsuwan, N.; Demetriadou, A.; Chikkaraddy, R.; Benz, F.; Turek, V. A.; Keyser, U. F.; Baumberg, J. J.; Hess, O. Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 2018, 5, 186–191.

    Article  CAS  Google Scholar 

  48. Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.

    Article  CAS  Google Scholar 

  49. Chikkaraddy, R.; De Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130.

    Article  CAS  Google Scholar 

  50. Ojambati, O. S.; Chikkaraddy, R.; Deacon, W. D.; Horton, M.; Kos, D.; Turek, V. A.; Keyser, U. F.; Baumberg, J. J. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat. Commun. 2019, 10, 1049.

    Article  CAS  Google Scholar 

  51. Zhang, Y.; Meng, Q. S.; Zhang, L.; Luo, Y.; Yu, Y. J.; Yang, B.; Zhang, Y.; Esteban, R.; Aizpurua, J.; Luo, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 2017, 8, 15225.

    Article  CAS  Google Scholar 

  52. Liu, Y. T.; Bian, Y. J.; Zhang, Y. Y.; Hang, C.; Zhang, X. L.; Lou, S. T.; Jin, Q. Y. Fluorescence of cotpp mediated by the plasmon-exciton coupling effect in the tunneling junction. J. Phys. Chem. Lett. 2021, 12, 5349–5356.

    Article  CAS  Google Scholar 

  53. Zhang, L.; Yu, Y. J.; Chen, L. G.; Luo, Y.; Yang, B.; Kong, F. F.; Chen, G.; Zhang, Y.; Zhang, Q.; Luo, Y. et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 2017, 8, 580.

    Article  CAS  Google Scholar 

  54. Rogez, B.; Cao, S.; Dujardin, G.; Comtet, G.; Le Moal, E.; Mayne, A.; Boer-Duchemin, E. The mechanism of light emission from a scanning tunnelling microscope operating in air. Nanotechnology 2016, 27, 465201.

    Article  CAS  Google Scholar 

  55. Chong, M. C.; Reecht, G.; Bulou, H.; Boeglin, A.; Scheurer, F.; Mathevet, F.; Schull, G. Narrow-line single-molecule transducer between electronic circuits and surface plasmons. Phys. Rev. Lett. 2016, 116, 036802.

    Article  CAS  Google Scholar 

  56. Merino, P.; Große, C.; Roslawska, A.; Kuhnke, K.; Kern, K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun. 2015, 6, 8461.

    Article  CAS  Google Scholar 

  57. Reecht, G.; Scheurer, F.; Speisser, V.; Dappe, Y. J.; Mathevet, F.; Schull, G. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys. Rev. Lett. 2014, 112, 047403.

    Article  CAS  Google Scholar 

  58. Chen, C.; Chu, P.; Bobisch, C. A.; Mills, D. L.; Ho, W. Viewing the interior of a single molecule: Vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett. 2010, 105, 217402.

    Article  CAS  Google Scholar 

  59. Dong, Z. C.; Zhang, X. L.; Gao, H. Y.; Luo, Y.; Zhang, C.; Chen, L. G.; Zhang, R.; Tao, X.; Zhang, Y.; Yang, J. L. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat. Photonics 2010, 4, 50–54.

    Article  CAS  Google Scholar 

  60. Chen, G.; Luo, Y.; Gao, H. Y.; Jiang, J.; Yu, Y. J.; Zhang, L.; Zhang, Y.; Li, X. G.; Zhang, Z. Y.; Dong, Z. C. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett. 2019, 122, 117401.

    Article  Google Scholar 

  61. Uemura, T.; Furumoto, M.; Nakano, T.; Akai-Kasaya, M.; Saito, A.; Aono, M.; Kuwahara, Y. Local-plasmon-enhanced up-conversion fluorescence from copper phthalocyanine. Chem. Phys. Lett. 2007, 448, 232–236.

    Article  CAS  Google Scholar 

  62. Doležal, J.; Canola, S.; Merino, P.; švec, M. Exciton-trion conversion dynamics in a single molecule. ACS Nano 2021, 15, 7694–7699.

    Article  CAS  Google Scholar 

  63. Imada, H.; Miwa, K.; Imai-Imada, M.; Kawahara, S.; Kimura, K.; Kim, Y. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett. 2017, 119, 013901.

    Article  Google Scholar 

  64. Tian, X. J.; Kong, F. F.; Yu, Y. J.; Jing, S. H.; Zhang, X. B.; Liao, Y.; Zhang, Y.; Zhang, Y.; Dong, Z. C. Plasmon-enhanced S2 electroluminescence from the high-lying excited state of a single porphyrin molecule. Appl. Phys. Lett. 2020, 117, 243301.

    Article  CAS  Google Scholar 

  65. Gutzler, R.; Garg, M.; Ast, C. R.; Kuhnke, K.; Kern, K. Light-matter interaction at atomic scales. Nat. Rev. Phys. 2021, 3, 441–453.

    Article  Google Scholar 

  66. Vadai, M.; Nachman, N.; Ben-Zion, M.; Bürkle, M.; Pauly, F.; Cuevas, J. C.; Selzer, Y. Plasmon-induced conductance enhancement in single-molecule junctions. J. Phys. Chem. Lett. 2013, 4, 2811–2816.

    Article  CAS  Google Scholar 

  67. Thon, A.; Merschdorf, M.; Pfeiffer, W.; Klamroth, T.; Saalfrank, P.; Diesing, D. Photon-assisted tunneling versus tunneling of excited electrons in metal-insulator-metal junctions. Appl. Phys. A 2004, 78, 189–199.

    Article  CAS  Google Scholar 

  68. Wu, S. W.; Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 2010, 82, 085444.

    Article  CAS  Google Scholar 

  69. Vezzoli, A.; Brooke, R. J.; Higgins, S. J.; Schwarzacher, W.; Nichols, R. J. Single-molecule photocurrent at a metal-molecule-semiconductor junction. Nano Lett. 2017, 17, 6702–6707.

    Article  CAS  Google Scholar 

  70. Fung, E. D.; Adak, O.; Lovat, G.; Scarabelli, D.; Venkataraman, L. Too hot for photon-assisted transport: Hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett. 2017, 17, 1255–1261.

    Article  CAS  Google Scholar 

  71. Zhang, W. Q.; Liu, H. S.; Lu, J. S.; Ni, L. F.; Liu, H. T.; Li, Q.; Qiu, M.; Xu, B. Q.; Lee, T.; Zhao, Z. K. et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci. Appl. 2019, 8, 34.

    Article  CAS  Google Scholar 

  72. Yoshida, K.; Shibata, K.; Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett. 2015, 115, 138302.

    Article  CAS  Google Scholar 

  73. Cocker, T. L.; Peller, D.; Yu, P.; Repp, J.; Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 2016, 539, 263–267.

    Article  Google Scholar 

  74. Du, S. Q.; Yoshida, K.; Zhang, Y.; Hamada, I.; Hirakawa, K. Terahertz dynamics of electron-vibron coupling in single molecules with tunable electrostatic potential. Nat. Photonics 2018, 12, 608–612.

    Article  CAS  Google Scholar 

  75. Peller, D.; Kastner, L. Z.; Buchner, T.; Roelcke, C.; Albrecht, F.; Moll, N.; Huber, R.; Repp, J. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 2020, 585, 58–62.

    Article  CAS  Google Scholar 

  76. Kang, T.; Bahk, Y. M.; Kim, D. S. Terahertz quantum plasmonics at nanoscales and angstrom scales. Nanophotonics 2020, 9, 435–451.

    Article  CAS  Google Scholar 

  77. Lange, S. L.; Noori, N. K.; Kristensen, T. M. B.; Steenberg, K.; Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 2020, 128, 070901.

    Article  CAS  Google Scholar 

  78. Battacharyya, S.; Kibel, A.; Kodis, G.; Liddell, P. A.; Gervaldo, M.; Gust, D.; Lindsay, S. Optical modulation of molecular conductance. Nano Lett. 2011, 11, 2709–2714.

    Article  CAS  Google Scholar 

  79. Wang, S. K.; Wattanatorn, N.; Chiang, N.; Zhao, Y. X.; Kim, M.; Ma, H.; Jen, A. K. Y.; Weiss, P. S. Photoinduced charge transfer in single-molecule p—n junctions. J. Phys. Chem. Lett. 2019, 10, 2175–2181.

    Article  CAS  Google Scholar 

  80. Zhao, Z. K.; Guo, C. Y.; Ni, L. F.; Zhao, X. Y.; Zhang, S. R.; Xiang, D. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz. 2021, 6, 386–392.

    Article  CAS  Google Scholar 

  81. Loth, S.; Etzkorn, M.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 2010, 329, 1628–1630.

    Article  CAS  Google Scholar 

  82. Peng, J. B.; Sokolov, S.; Hernangómez-Pérez, D.; Evers, F.; Gross, L.; Lupton, J. M.; Repp, J. Atomically resolved single-molecule triplet quenching. Science 2021, 373, 452–456.

    Article  CAS  Google Scholar 

  83. Chandler, H. J.; Stefanou, M.; Campbell, E. E. B.; Schaub, R. Li@C60 as a multi-state molecular switch. Nat. Commun. 2019, 10, 2283.

    Article  CAS  Google Scholar 

  84. Yasuda, S.; Nakamura, T.; Matsumoto, M.; Shigekawa, H. Phase switching of a single isomeric molecule and associated characteristic rectification. J. Am. Chem. Soc. 2003, 125, 16430–16433.

    Article  CAS  Google Scholar 

  85. Quintans, C. S.; Andrienko, D.; Domke, K. F.; Aravena, D.; Koo, S.; Díez-Pérez, I.; Aragonès, A. C. Tuning single-molecule conductance by controlled electric field-induced trans-to-cis isomerisation. Appl. Sci. 2021, 11, 3317.

    Article  CAS  Google Scholar 

  86. Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Modern molecular photochemistry of organic molecules. Photochem. Photobiol. 2012, 88, 1033.

    Article  CAS  Google Scholar 

  87. Avouris, P.; Persson, B. N. J. Excited states at metal surfaces and their non-radiative relaxation. J. Phys. Chem. 1984, 88, 837–848.

    Article  CAS  Google Scholar 

  88. Chance, R. R.; Prock, A.; Silbey, R. Molecular fluorescence and energy transfer near interfaces. In Advances in Chemical Physics. Prigogine, I.; Rice, S. A., Eds.; John Wiley & Sons: Hoboken, 1978; pp 1–65.

    Google Scholar 

  89. Waldeck, D. H.; Alivisatos, A. P.; Harris, C. B. Nonradiative damping of molecular electronic excited states by metal surfaces. Surf. Sci. 1985, 158, 103–125.

    Article  CAS  Google Scholar 

  90. Hoffmann, G.; Libioulle, L.; Berndt, R. Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution. Phys. Rev. B 2002, 65, 212107.

    Article  CAS  Google Scholar 

  91. Luo, Y.; Chen, G.; Zhang, Y.; Zhang, L.; Yu, Y. J.; Kong, F. F.; Tian, X. J.; Zhang, Y.; Shan, C. X.; Luo, Y. et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett. 2019, 122, 233901.

    Article  CAS  Google Scholar 

  92. Doppagne, B.; Neuman, T.; Soria-Martinez, R.; López, L. E. P.; Bulou, H.; Romeo, M.; Berciaud, S.; Scheurer, F.; Aizpurua, J.; Schull, G. Single-molecule tautomerization tracking through space-and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 2020, 15, 207–211.

    Article  CAS  Google Scholar 

  93. Zhang, X. L.; Chen, L. G.; Lv, P.; Gao, H. Y.; Wei, S. J.; Dong, Z. C.; Hou, J. G. Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols. Appl. Phys. Lett. 2008, 92, 223118.

    Article  CAS  Google Scholar 

  94. Dong, Z. C.; Guo, X. L.; Trifonov, A. S.; Dorozhkin, P. S.; Miki, K.; Kimura, K.; Yokoyama, S.; Mashiko, S. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett. 2004, 92, 086801.

    Article  CAS  Google Scholar 

  95. Marquardt, C. W.; Grunder, S.; Blaszczyk, A.; Dehm, S.; Hennrich, F.; Löhneysen, H. V.; Mayor, M.; Krupke, R. Electroluminescence from a single nanotube-molecule-nanotube junction. Nat. Nanotechnol. 2010, 5, 863–867.

    Article  CAS  Google Scholar 

  96. Zhu, S. E.; Kuang, Y. M.; Geng, F.; Zhu, J. Z.; Wang, C. Z.; Yu, Y. J.; Luo, Y.; Xiao, Y.; Liu, K. Q.; Meng, Q. S. et al. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. J. Am. Chem. Soc. 2013, 135, 15794–15800.

    Article  CAS  Google Scholar 

  97. Ijaz, T.; Yang, B.; Wang, R. P.; Zhu, J. Z.; Farrukh, A.; Chen, G.; Franc, G.; Zhang, Y.; Gourdon, A.; Dong, Z. C. Self-decoupled tetrapodal perylene molecules for luminescence studies of isolated emitters on Au(111). Appl. Phys. Lett. 2019, 115, 173101.

    Article  CAS  Google Scholar 

  98. Zhao, S. Q.; Chen, H.; Qian, Q. Z.; Zhang, H. W.; Yang, Y.; Hong, W. J. Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Res., in press, https://doi.org/10.1007/s12274-021-3687-2.

  99. Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecularscale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

    Article  CAS  Google Scholar 

  100. You, Y.; Nam, W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: Beyond electroluminescence. Chem. Soc. Rev. 2012, 41, 7061–7084.

    Article  CAS  Google Scholar 

  101. Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302.

    Article  CAS  Google Scholar 

  102. Zhao, J. Z.; Wu, W. H.; Sun, J. F.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351.

    Article  CAS  Google Scholar 

  103. Zhou, G. J.; Wong, W. Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials. Chem. Soc. Rev. 2011, 40, 2541–2566.

    Article  CAS  Google Scholar 

  104. Ojambati, O. S.; Chikkaraddy, R.; Deacon, W. M.; Huang, J. Y.; Wright, D.; Baumberg, J. J. Efficient generation of two-photon excited phosphorescence from molecules in plasmonic nanocavities. Nano Lett. 2020, 20, 4653–4658.

    Article  CAS  Google Scholar 

  105. Neuman, T.; Esteban, R.; Casanova, D.; García-Vidal, F. J.; Aizpurua, J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 2018, 18, 2358–2364.

    Article  CAS  Google Scholar 

  106. Ojambati, O. S.; Deacon, W. M.; Chikkaraddy, R.; Readman, C.; Lin, Q. Q.; Koczor-Benda, Z.; Rosta, E.; Scherman, O. A.; Baumberg, J. J. Breaking the selection rules of spin-forbidden molecular absorption in plasmonic nanocavities. ACS Photonics 2020, 7, 2337–2342.

    Article  CAS  Google Scholar 

  107. Kimura, K.; Miwa, K.; Imada, H.; Imai-Imada, M.; Kawahara, S.; Takeya, J.; Kawai, M.; Galperin, M.; Kim, Y. Selective triplet exciton formation in a single molecule. Nature 2019, 570, 210–213.

    Article  CAS  Google Scholar 

  108. Lin, Y. T.; Ye, Y. Z.; Fang, W. Electrically driven single-photon sources. J. Semicond. 2019, 40, 071904.

    Article  CAS  Google Scholar 

  109. Roslawska, A.; Leon, C. C.; Grewal, A.; Merino, P.; Kuhnke, K.; Kern, K. Atomic-scale dynamics probed by photon correlations. ACS Nano 2020, 14, 6366–6375.

    Article  CAS  Google Scholar 

  110. Nothaft, M.; Höhla, S.; Jelezko, F.; Frühauf, N.; Pflaum, J.; Wrachtrup, J. Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 2012, 3, 628.

    Article  CAS  Google Scholar 

  111. Leon, C. C.; Gunnarsson, O.; De Oteyza, D. G.; Roslawska, A.; Merino, P.; Grewal, A.; Kuhnke, K.; Kern, K. Single photon emission from a plasmonic light source driven by a local field-induced coulomb blockade. ACS Nano 2020, 14, 4216–4223.

    Article  CAS  Google Scholar 

  112. Barkai, E.; Jung, Y.; Silbey, R. Theory of single-molecule spectroscopy: Beyond the ensemble average. Annu. Rev. Phys. Chem. 2004, 55, 457–507.

    Article  CAS  Google Scholar 

  113. Li, Y. Q.; Wang, H.; Wang, Z. X.; Qiao, Y. J.; Ulstrup, J.; Chen, H. Y.; Zhou, G.; Tao, N. J. Transition from stochastic events to deterministic ensemble average in electron transfer reactions revealed by single-molecule conductance measurement. Proc. Natl. Acad. Sci. USA 2019, 116, 3407–3412.

    Article  CAS  Google Scholar 

  114. Lippitz, M.; Kulzer, F.; Orrit, M. Statistical evaluation of single nano-object fluorescence. ChemPhysChem 2005, 6, 770–789.

    Article  CAS  Google Scholar 

  115. Patera, L. L.; Queck, F.; Scheuerer, P.; Repp, J. Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 2019, 566, 245–248.

    Article  CAS  Google Scholar 

  116. Patera, L. L.; Queck, F.; Scheuerer, P.; Moll, N.; Repp, J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett. 2019, 123, 016001.

    Article  CAS  Google Scholar 

  117. Patera, L. L.; Queck, F.; Repp, J. Imaging charge localization in a conjugated oligophenylene. Phys. Rev. Lett. 2020, 125, 176803.

    Article  CAS  Google Scholar 

  118. Doppagne, B.; Chong, M. C.; Bulou, H.; Boeglin, A.; Scheurer, F.; Schull, G. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–255.

    Article  CAS  Google Scholar 

  119. Farrukh, A.; Tian, X. J.; Kong, F. F.; Yu, Y. J.; Jing, S. H.; Chen, G.; Zhang, Y.; Liao, Y.; Zhang, Y.; Dong, Z. C. Bias-polarity dependent electroluminescence from a single platinum phthalocyanine molecule. Chin. J. Chem. Phys. 2021, 34, 87–94.

    Article  CAS  Google Scholar 

  120. Van Grondelle, R.; Dekker, J. P.; Gillbro, T.; Sundstrom, V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta Bioenerg. 1994, 1187, 1–65.

    Article  Google Scholar 

  121. Van Grondelle, R.; Novoderezhkin, V. I. Energy transfer in photosynthesis: Experimental insights and quantitative models. Phys. Chem. Chem. Phys. 2006, 8, 793–807.

    Article  CAS  Google Scholar 

  122. Priya, S.; Inman, D. J. Energy Harvesting Technologies; Springer: Boston, 2009.

    Book  Google Scholar 

  123. Castano, A. P.; Demidova, T. N.; Hamblin, M. R. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  124. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kedzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107.

    Article  CAS  Google Scholar 

  125. Zhang, Y.; Luo, Y.; Zhang, Y.; Yu, Y. J.; Kuang, Y. M.; Zhang, L.; Meng, Q. S.; Luo, Y.; Yang, J. L.; Dong, Z. C. et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 2016, 531, 623–627.

    Article  CAS  Google Scholar 

  126. Imada, H.; Miwa, K.; Imai-Imada, M.; Kawahara, S.; Kimura, K.; Kim, Y. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367.

    Article  CAS  Google Scholar 

  127. Raman, C. V.; Krishnan, K. S. A new type of secondary radiation. Nature 1928, 121, 501–502.

    Article  CAS  Google Scholar 

  128. Robert, B. Resonance Raman spectroscopy. Photosynth. Res. 2009, 101, 147–155.

    Article  CAS  Google Scholar 

  129. Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.

    Article  CAS  Google Scholar 

  130. Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

    Article  CAS  Google Scholar 

  131. Gersten, J.; Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 1980, 73, 3023–3037.

    Article  CAS  Google Scholar 

  132. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826.

    Article  CAS  Google Scholar 

  133. Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041.

    Article  CAS  Google Scholar 

  134. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  CAS  Google Scholar 

  135. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  136. Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

    Article  CAS  Google Scholar 

  137. Michaels, A. M.; Jiang, J.; Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 2000, 104, 11965–11971.

    Article  CAS  Google Scholar 

  138. Tian, J. H.; Liu, B.; Li, X. L; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.

    Article  CAS  Google Scholar 

  139. Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y. P.; Nordlander, P.; Natelson, D. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7, 1396–1400.

    Article  CAS  Google Scholar 

  140. Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

    Article  CAS  Google Scholar 

  141. Zheng, J.; Liu, J.; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.; Chen, Z.-B.; Shi, J.; Xiao, Z.; Hong, W.; Tian, Z.-q. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 2018, 9, 5033–5038.

    Article  CAS  Google Scholar 

  142. Konishi, T.; Kiguchi, M.; Takase, M.; Nagasawa, F.; Nabika, H.; Ikeda, K.; Uosaki, K.; Ueno, K.; Misawa, H.; Murakoshi, K. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature. J. Am. Chem. Soc. 2013, 135, 1009–1014.

    Article  CAS  Google Scholar 

  143. Jeong, H.; Li, H. B.; Domulevicz, L.; Hihath, J. An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv. Funct. Mater. 2020, 30, 2000615.

    Article  CAS  Google Scholar 

  144. Domulevicz, L.; Jeong, H.; Paul, N. K.; Gomez-Diaz, J. S.; Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. Angew. Chem., Int. Ed. 2021, 60, 16436–16441.

    Article  CAS  Google Scholar 

  145. Jiang, S.; Zhang, Y.; Zhang, R.; Hu, C. R.; Liao, M. H.; Luo, Y.; Yang, J. L.; Dong, Z. C.; Hou, J. G. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol. 2015, 10, 865–869.

    Article  CAS  Google Scholar 

  146. Wang, R. P.; Yang, B.; Fu, Q.; Zhang, Y.; Zhu, R.; Dong, X. R.; Zhang, Y.; Wang, B.; Yang, J. L.; Luo, Y. et al. Raman detection of bond breaking and making of a chemisorbed up-standing single molecule at single-bond level. J. Phys. Chem. Lett. 2021, 12, 1961–1968.

    Article  CAS  Google Scholar 

  147. Jaculbia, R. B.; Imada, H.; Miwa, K.; Iwasa, T.; Takenaka, M.; Yang, B.; Kazuma, E.; Hayazawa, N.; Taketsugu, T.; Kim, Y. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020, 15, 105–110.

    Article  CAS  Google Scholar 

  148. Chong, M. C.; Sosa-Vargas, L.; Bulou, H.; Boeglin, A.; Scheurer, F.; Mathevet, F.; Schull, G. Ordinary and hot electroluminescence from single-molecule devices: Controlling the emission color by chemical engineering. Nano Lett. 2016, 16, 6480–6484.

    Article  CAS  Google Scholar 

  149. Doppagne, B.; Chong, M. C.; Lorchat, E.; Berciaud, S.; Romeo, M.; Bulou, H.; Boeglin, A.; Scheurer, F.; Schull, G. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 2017, 118, 127401.

    Article  Google Scholar 

  150. Van Der Molen, S. J.; Liao, J. H.; Kudernac, T.; Agustsson, J. S.; Bernard, L.; Calame, M.; Van Wees, B. J.; Feringa, B. L. Schönenberger, C. Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett. 2009, 9, 76–80.

    Article  CAS  Google Scholar 

  151. Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

    Article  CAS  Google Scholar 

  152. Huang, C. C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436.

    Article  CAS  Google Scholar 

  153. Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

    Article  CAS  Google Scholar 

  154. Prince, R. C.; Frontiera, R. R.; Potma, E. O. Stimulated Raman scattering: From bulk to nano. Chem. Rev. 2017, 117, 5070–5094.

    Article  CAS  Google Scholar 

  155. Vogel, Y. B.; Darwish, N.; Ciampi, S. Spatiotemporal control of electrochemiluminescence guided by a visible light stimulus. Cell Rep. Phys. Sci. 2020, 1, 100107.

    Article  Google Scholar 

  156. Dong, J. R.; Lu, Y. X.; Xu, Y.; Chen, F. F.; Yang, J. M.; Chen, Y.; Feng, J. D. Direct imaging of single-molecule electrochemical reactions in solution. Nature 2021, 596, 244–249.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22173075, 21933012 and 31871877), the National Key R&D Program of China (No. 2017YFA0204902), the Fundamental Research Funds for the Central Universities (Nos. 20720200068 and 20720190002), and the Beijing National Laboratory for Molecular Sciences (No. BNLMS202005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyang Liu or Wenjing Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Li, R., Wang, C. et al. Investigation of electronic excited states in single-molecule junctions. Nano Res. 15, 5726–5745 (2022). https://doi.org/10.1007/s12274-022-4102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4102-3

Keywords

Navigation