Skip to main content
Log in

Breaking pore size limit of metal—organic frameworks: Bio-etched ZIF-8 for lactase immobilization and delivery in vivo

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Expanding pore size range of metal—organic frameworks (MOFs) promotes their versatility and feasibility for various biomedical applications. However, natural pore size greatly restricts large guest molecule accommodation. Customizing and tailoring pore apertures ranging from micropores to mesopores controllably is desired but still critically challenging. Herein, we developed a facile method with super mildness based on pH-sensitive zeolitic imidazolate framework (ZIF)-8 to increase porosity, providing pore size with maximum 20 nm, which is 8 times larger than average. Glucose oxidase (GOx) was introduced in ZIF-8 for bioetching, benefitted from the resultant acidic microe-nvironment during biocatalytic process. Different synthesis methods were assessed for obtaining different morphologies and size distributions. Reaction time, GOx encapsulation efficiency, and Zn2+ concentration was optimized to precisely control the mesopore size distribution of MOFs. It was found that bio-etching strategy was capable of producing stable mesopores which were large enough for loading lactase with good enzymatic activity retained, verified both in vitro and in vivo. This strategy breaks natural pore size limitation of MOFs and thereby facilitates biomolecule delivery, catalysis, and other biomedical applications with enhanced stability and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue, D. X.; Wang, Q.; Bai, J. F. Amide-functionalized metal—organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 2019, 378, 2–16.

    Article  CAS  Google Scholar 

  2. Wang, T. S.; Gao, L. J.; Hou, J. W.; Herou, S. J. A.; Griffiths, J. T.; Li, W. W.; Dong, J. H.; Gao, S.; Titirici, M. M.; Kumar, R. V. et al. Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 2019, 10, 1340.

    Article  CAS  Google Scholar 

  3. Zhang, Y.; Ma, S. Q. Controllable immobilization of enzymes in metal—organic frameworks for biocatalysis. Chem Catal. 2021, 1, 20–22.

    Article  Google Scholar 

  4. Tchalala, M. R.; Bhatt, P. M.; Chappanda, K. N.; Tavares, S. R.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Cadiau, A.; Heymans, N.; De Weireld, G. et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat. Commun. 2019, 10, 1328.

    Article  CAS  Google Scholar 

  5. Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. 2019, 131, 15057–15061.

    Article  Google Scholar 

  6. Gao, X. C.; Cui, R. X.; Song, L. J.; Liu, Z. L. Hollow structural metal—organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans. 2019, 48, 17291–17297.

    Article  CAS  Google Scholar 

  7. Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z. H.; Zhang, X.; Zhou, Z.; Bu, X. H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29–104.

    Article  CAS  Google Scholar 

  8. Yang, M. J.; Hu, X. H.; Fang, Z. S.; Sun, L.; Yuan, Z. K.; Wang, S. Y.; Hong, W.; Chen, X. D.; Yu, D. S. Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li−S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 2017, 27, 1701971.

    Article  CAS  Google Scholar 

  9. Qi, X. Y.; Chang, Z. Y.; Zhang, D.; Binder, K. J.; Shen, S. S.; Huang, Y. Y. S.; Bai, Y.; Wheatley, A. E. H.; Liu, H. W. Harnessing surface-functionalized metal—organic frameworks for selective tumor cell capture. Chem. Mater. 2017, 29, 8052–8056.

    Article  CAS  Google Scholar 

  10. Qi, X. Y.; Chang, Z. Y.; Fu, G. Q.; Chen, T. F. Modification of metal—organic framework composites as trackable carriers with fluorescent and magnetic properties. Nanotechnology 2021, 32, 105101.

    Article  CAS  Google Scholar 

  11. Qi, X. Y.; Li, X. J.; Bai, Y.; Liu, H. W. Synthesis and applications of chiral metal—organic framework in the selective separation of enantiomers. Chin. J. Chromatogr. 2016, 34, 10–15.

    Article  CAS  Google Scholar 

  12. Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 2018, 140, 143–146.

    Article  CAS  Google Scholar 

  13. Chang, Z. Y.; Li, F. X.; Qi, X. Y.; Jiang, B.; Kou, J.; Sun, C. B. Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal—organic frameworks (MOFs): An unconventional way for gold recycling. J. Hazard. Mater. 2020, 391, 122175.

    Article  CAS  Google Scholar 

  14. Chang, Z. Y.; Zeng, L.; Sun, C. B.; Zhao, P.; Wang, J. Y.; Zhang, L. N.; Zhu, Y. G.; Qi, X. Y. Adsorptive recovery of precious metals from aqueous solution using nanomaterials-A critical review. Coord. Chem. Rev. 2021, 445, 214072.

    Article  CAS  Google Scholar 

  15. Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Article  CAS  Google Scholar 

  16. Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal—organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

    Article  CAS  Google Scholar 

  17. Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Snurr, R. Q. Computational design of metal—organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mater. 2014, 26, 5632–5639.

    Article  CAS  Google Scholar 

  18. Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal—organic frameworks. Science 2012, 336, 1018–1023.

    Article  CAS  Google Scholar 

  19. Jiang, H. L.; Makal, T. A.; Zhou, H. C. Interpenetration control in metal—organic frameworks for functional applications. Coord. Chem. Rev. 2013, 257, 2232–2249.

    Article  CAS  Google Scholar 

  20. An, J. Y.; Farha, O. K.; Hupp, J. T.; Pohl, E.; Yeh, J. I.; Rosi, N. L. Metal-adeninate vertices for the construction of an exceptionally porous metal—organic framework. Nat. Commun. 2012, 3, 604.

    Article  CAS  Google Scholar 

  21. Amirilargani, M.; Merlet, R. B.; Hedayati, P.; Nijmeijer, A.; Winnubst, L.; de Smet, L. C. P. M.; Sudhölter, E. J. R. MIL-53(Al) and NH2-MIL-53(Al) modified α-alumina membranes for efficient adsorption of dyes from organic solvents. Chem. Commun. 2019, 55, 4119–4122.

    Article  CAS  Google Scholar 

  22. Taima-Mancera, I.; Rocío-Bautista, P.; Pasán, J.; Ayala, J. H.; Ruiz-Pérez, C.; Afonso, A. M.; Lago, A. B.; Pino, V. Influence of ligand functionalization of UiO-66-based metal—organic frameworks when used as sorbents in dispersive solid-phase analytical microextraction for different aqueous organic pollutants. Molecules 2018, 23, 2869.

    Article  CAS  Google Scholar 

  23. Parshamoni, S.; Telangae, J.; Konar, S. Regulation of the pore size by shifting the coordination sites of ligands in two MOFs: Enhancement of CO2 uptake and selective sensing of nitrobenzene. Dalton Trans. 2015, 44, 20926–20935.

    Article  CAS  Google Scholar 

  24. Yue, Y. F.; Fulvio, P. F.; Dai, S. Hierarchical metal—organic framework hybrids: Perturbation-assisted nanofusion synthesis. Acc. Chem. Res. 2015, 48, 3044–3052.

    Article  CAS  Google Scholar 

  25. Abdelhamid, H. N.; Huang, Z. H.; El-Zohry, A. M.; Zheng, H. Q.; Zou, X. D. A fast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules. Inorg. Chem. 2017, 56, 9139–9146.

    Article  CAS  Google Scholar 

  26. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15, 1794–1801.

    Article  CAS  Google Scholar 

  27. Zhang, Y. Y.; Jia, Y.; Li, M.; Hou, L. A. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Sci. Rep. 2018, 8, 9597.

    Article  CAS  Google Scholar 

  28. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  29. He, X.; Yang, C.; Wang, D. W.; Gilliland III, S. E.; Chen, D. R.; Wang, W. N. Facile synthesis of ZnO@ZIF core-shell nanofibers: Crystal growth and gas adsorption. CrystEngComm 2017, 19, 2445–2450.

    Article  CAS  Google Scholar 

  30. Zheng, G. C.; Chen, Z. W.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017, 9, 16645–16651.

    Article  CAS  Google Scholar 

  31. Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

    Article  CAS  Google Scholar 

  32. Wong, C. M.; Wong, K. H.; Chen, X. D. Glucose oxidase: Natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol. 2008, 78, 927–938.

    Article  CAS  Google Scholar 

  33. Libertino, S.; Aiello, V.; Scandurra, A.; Renis, M.; Sinatra, F. Immobilization of the enzyme glucose oxidase on both bulk and porous SiO2 surfaces. Sensors 2008, 8, 5637–5648.

    Article  CAS  Google Scholar 

  34. Lee, D. T.; Zhao, J. J.; Oldham, C. J.; Peterson, G. W.; Parsons, G. N. UiO-66-NH2 metal—organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: Role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 2017, 9, 44847–44855.

    Article  CAS  Google Scholar 

  35. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501.

    Article  CAS  Google Scholar 

  36. Sun, C. Y.; Qin, C.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Su, Z. M.; Huang, P.; Wang, C. G.; Wang, E. B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012, 41, 6906–6909.

    Article  CAS  Google Scholar 

  37. Shi, H. Y.; Yuan, L.; Wu, Y. F.; Liu, S. Q. Colorimetric immunosensing via protein functionalized gold nanoparticle probe combined with atom transfer radical polymerization. Biosens. Bioelectron 2011, 26, 3788–3793.

    Article  CAS  Google Scholar 

  38. Liu, S. N.; Liu, Y.; Hu, C. L.; Ma, P. A.; Zhao, X. Y.; Pang, M. L. Boosting the antitumor efficacy over a nanoscale porphyrin-based covalent organic polymer via synergistic photodynamic and photothermal therapy. Chem. Commun. 2019, 55, 6269–6272.

    Article  CAS  Google Scholar 

  39. Hafizovic, J.; Bjørgen, M.; Olsbye, U.; Dietzel, P. D. C.; Bordiga, S.; Prestipino, C.; Lamberti, C.; Lillerud, K. P. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 2007, 129, 3612–3620.

    Article  CAS  Google Scholar 

  40. Huang, H. L.; Li, J. R.; Wang, K. K.; Han, T. T.; Tong, M. M.; Li, L. S.; Xie, Y. B.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal—organic frameworks. Nat. Commun. 2015, 6, 8847.

    Article  CAS  Google Scholar 

  41. Lerebours, E.; N’ Djitoyap Ndam, C.; Lavoine, A.; Hellot, M. F.; Antoine, J. M.; Colin, R. Yogurt and fermented-then-pasteurized milk: Effects of short-term and long-term ingestion on lactose absorption and mucosal lactase activity in lactase-deficient subjects. Am. J. Clin. Nutr. 1989, 49, 823–827.

    Article  CAS  Google Scholar 

  42. Yan, M.; Liu, Z. X.; Lu, D. N.; Liu, Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 2007, 8, 560–565.

    Article  CAS  Google Scholar 

  43. Li, J. W.; Wang, T.; Kirtane, A. R.; Shi, Y. H.; Jones, A.; Moussa, Z.; Lopes, A.; Collins, J.; Tamang, S. M.; Hess, K. et al. Gastrointestinal synthetic epithelial linings. Sci. Transl. Med. 2020, 12, eabc0441.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 1870011182123), the National Natural Science Foundation of China (No. 52004020), and Fundamental Research Funds for the Central Universities (No. FRF-TP-19-024A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyue Qi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Chen, Q., Chang, Z. et al. Breaking pore size limit of metal—organic frameworks: Bio-etched ZIF-8 for lactase immobilization and delivery in vivo. Nano Res. 15, 5646–5652 (2022). https://doi.org/10.1007/s12274-022-4082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4082-3

Keywords

Navigation