Skip to main content
Log in

Manipulating the ionic nanophase of Nafion by in-situ precise hybridization with polymer quantum dot towards highly enhanced fuel cell performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hierarchical-structure materials hold great promise for numerous applied domains such as fuel cell, sensor, and optic. However, the developments are significantly impeded by the lack of efficient strategy permitting precise and efficient decoration of specific confined space. Here, an in-situ precise hybridization strategy is proposed to efficiently manipulate the nanostructure of membrane nanochannels. Typically, Nafion ionic nanochannels are impregnated with precursors via heat swelling, followed by microwave-assisted condensation to form polymer quantum dot network. The formation of polymer quantum dot network significantly improves the stability and functionality of ionic nanophase (i.e., ionic nanochannel). This helps hybrid membrane achieving enhanced proton conduction and methanol barrier properties, resulting in over ten times increase in proton/methanol selectivity. These then impart prominent device performances for both hydrogen and methanol fuel cells with the elevation of ∼ 100%. Importantly, such function manipulation of ionic nanochannels is achieved with fully maintaining function of backbone nanophase. Besides, the regulation of physical topology and chemical environment of ionic nanochannel also brings optimization of gas and ion separation properties. This facile and versatile strategy may open up a new avenue for decorating confined space of many hierarchical-structure materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, L.; Wang, K. Y.; Day, G. S.; Zhou, H. C. The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 2019, 48, 4823–4853.

    Article  CAS  Google Scholar 

  2. Mao, H. Y.; Tang, J.; Chen, J.; Wan, J. Y.; Hou, K. P.; Peng, Y. C.; Halat, D. M.; Xiao, L. G.; Zhang, R. F.; Lv, X. D. et al. Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage. Sci. Adv. 2020, 6, eabb0694.

  3. Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv. Funct. Mater. 2012, 22, 675–694.

    Article  CAS  Google Scholar 

  4. Vallé, K.; Belleville, P.; Pereira, F.; Sanchez, C. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nat. Mater. 2006, 5, 107–111.

    Article  Google Scholar 

  5. Kusoglu, A.; Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017, 117, 987–1104.

    Article  CAS  Google Scholar 

  6. Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S. et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483.

    Article  Google Scholar 

  7. Qian, X. T.; Chen, L.; Yin, L. C.; Liu, Z. B.; Pei, S. F.; Li, F.; Hou, G. J.; Chen, S. G.; Song, L.; Thebo, K. H. et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370, 596–600.

    Article  CAS  Google Scholar 

  8. Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A. W. et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230.

    Article  CAS  Google Scholar 

  9. Cao, L.; Wu, H.; Cao, Y.; Fan, C. Y.; Zhao, R.; He, X. Y.; Yang, P. F.; Shi, B. B.; You, X. D.; Jiang, Z. Y. Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 2020, 32, 2005565.

    Article  Google Scholar 

  10. Paneri, A.; Heo, Y.; Ehlert, G.; Cottrill, A.; Sodano, H.; Pintauro, P.; Moghaddam, S. Proton selective ionic graphene-based membrane for high concentration direct methanol fuel cells. J. Membr. Sci. 2014, 467, 217–225.

    Article  CAS  Google Scholar 

  11. Wu, W. J.; Li, Y. F.; Liu, J. D.; Wang, J. T.; He, Y. K.; Davey, K.; Qiao, S. Z. Molecular-level hybridization of Nafion with quantum dots for highly enhanced proton conduction. Adv. Mater. 2018, 30, 1707516.

    Article  Google Scholar 

  12. Deng, W. Q.; Molinero, V.; Goddard, W. A. Fluorinated imidazoles as proton carriers for water-free fuel cell membranes. J. Am. Chem. Soc. 2004, 126, 15644–15645.

    Article  CAS  Google Scholar 

  13. Choi, S. Y.; Cho, S.; Kim, D.; Kim, J.; Song, G.; Singh, R.; Kim, C. Boosting the proton conduction using protonated imidazole for advanced ion conducting membrane. J. Membr. Sci. 2021, 620, 118904.

    Article  CAS  Google Scholar 

  14. Jalili, J.; Borsacchi, S.; Tricoli, V. Proton conducting membranes in fully anhydrous conditions at elevated temperature: Effect of Nitrilotris(methylenephosphonic acid) incorporation into Nafion-and poly(styrenesulfonic acid). J. Membr. Sci. 2014, 469, 162–173.

    Article  CAS  Google Scholar 

  15. Di Noto, V.; Negro, E.; Sanchez, J. Y.; Iojoiu, C. Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized Nafion 117 for high-temperature fuel cells. J. Am. Chem. Soc. 2010, 132, 2183–2195.

    Article  CAS  Google Scholar 

  16. Fu, Y. Z.; Manthiram, A. Nafion-imidazole-H3PO4 composite membranes for proton exchange membrane fuel cells. J. Electrochem. Soc. 2007, 154, B8–B12.

    Article  CAS  Google Scholar 

  17. Yang, J. S.; Che, Q. T.; Zhou, L.; He, R. H.; Savinell, R. F. Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochim. Acta 2011, 56, 5940–5946.

    Article  CAS  Google Scholar 

  18. Lin, B. C.; Cheng, S.; Qiu, L. H.; Yan, F.; Shang, S. M.; Lu, J. M. Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem. Mater. 2010, 22, 1807–1813.

    Article  CAS  Google Scholar 

  19. Meier, F.; Kerres, J.; Eigenberger, G. Methanol diffusion in water swollen ionomer membranes for DMFC applications. J. Membr. Sci. 2004, 241, 137–141.

    Article  CAS  Google Scholar 

  20. Hallberg, F.; Vernersson, T.; Pettersson, E. T.; Dvinskikh, S. V.; Lindbergh, G.; Furó, I. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy. Electrochim. Acta 2010, 55, 3542–3549.

    Article  CAS  Google Scholar 

  21. Chen, Z. W.; Holmberg, B.; Li, W. Z.; Wang, X.; Deng, W. Q.; Munoz, R.; Yan, Y. S. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem. Mater. 2006, 18, 5669–5675.

    Article  CAS  Google Scholar 

  22. Chai, Z. L.; Wang, C.; Zhang, H. J.; Doherty, C. M.; Ladewig, B. P.; Hill, A. J.; Wang, H. T. Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchangemembrane fuel cells. Adv. Funct. Mater. 2010, 20, 4394–4399.

    Article  CAS  Google Scholar 

  23. Li, J.; Fan, K.; Cai, W. W.; Ma, L. Y.; Xu, G. X.; Xu, S.; Ma, L.; Cheng, H. S. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application. J. Power Sources 2016, 332, 37–41.

    Article  CAS  Google Scholar 

  24. Ladewig, B. P.; Knott, R. B.; Martin, D. J.; da Costa, J. C. D.; Lu, G. Q. Nafion-MPMDMS nanocomposite membranes with low methanol permeability. Electrochem. Commun. 2007, 9, 781–786.

    Article  CAS  Google Scholar 

  25. Ladewig, B. P.; Knott, R. B.; Hill, A. J.; Riches, J. D.; White, J. W.; Martin, D. J.; Da Costa, J. C. D.; Lu, G. Q. Physical and electrochemical characterization of nanocomposite membranes of Nafion and functionalized silicon oxide. Chem. Mater. 2007, 19, 2372–2381.

    Article  CAS  Google Scholar 

  26. Liu, B. L.; Hu, B.; Du, J.; Cheng, D. M.; Zang, H. Y.; Ge, X.; Tan, H. Q.; Wang, Y. H.; Duan, X. Z.; Jin, Z. et al. Precise molecular-level modification of Nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew. Chem., Int. Ed. 2021, 133, 6141–6150.

    Article  Google Scholar 

  27. Hanifpour, F.; Sveinbjörnsson, A.; Canales, C. P.; Skúlason, E.; Flosadóttir, H. D. Preparation of Nafion membranes for reproducible ammonia quantification in nitrogen reduction reaction experiments. Angew. Chem., Int. Ed. 2020, 59, 22938–22942.

    Article  CAS  Google Scholar 

  28. Yin, C. S.; Li, J. J.; Zhou, Y. W.; Zhang, H. N.; Fang, P. F.; He, C. Q. Enhancement in proton conductivity and thermal stability in Nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 14026–14035.

    Article  CAS  Google Scholar 

  29. Xia, R.; Cao, X. Z.; Gao, M. Z.; Zhang, P.; Zeng, M. F.; Wang, B. Y.; Wei, L. Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 3616–3626.

    Article  CAS  Google Scholar 

  30. Wang, J. T.; Jiang, S.; Zhang, H.; Lv, W. J.; Yang, X. L.; Jiang, Z. Y. Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres. J. Membr. Sci. 2010, 364, 253–262.

    Article  CAS  Google Scholar 

  31. Zhu, S. J.; Song, Y. B.; Shao, J. R.; Zhao, X. H.; Yang, B. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem., Int. Ed. 2015, 54, 14626–14637.

    Article  CAS  Google Scholar 

  32. Einsla, M. L.; Kim, Y. S.; Hawley, M.; Lee, H. S.; McGrath, J. E.; Liu, B. J.; Guiver, M. D.; Pivovar, B. S. Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity. Chem. Mater. 2008, 20, 5636–5642.

    Article  CAS  Google Scholar 

  33. Matos, B. R.; Dresch, M. A.; Santiago, E. I.; Moraes, L. P. R.; Carastan, D. J.; Schoenmaker, J.; Velasco-Davalos, I. A.; Ruediger, A.; Tavares, A. C.; Fonseca, F. C. Nafion membranes annealed at high temperature and controlled humidity: Structure, conductivity, and fuel cell performance. Electrochim. Acta 2016, 196, 110–117.

    Article  CAS  Google Scholar 

  34. Matos, B. R.; Santiago, E. I.; Rey, J. F. Q.; Ferlauto, A. S.; Traversa, E.; Linardi, M.; Fonseca, F. C. Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 °C with titania nanoparticles and nanotubes as filler. J. Power Sources 2011, 196, 1061–1068.

    Article  CAS  Google Scholar 

  35. Dimitrova, P.; Friedrich, K. A.; Stimming, U.; Vogt, B. Modified Nafion®-based membranes for use in direct methanol fuel cells. Solid State Ionics 2002, 150, 115–122.

    Article  CAS  Google Scholar 

  36. Moore III, R. B.; Martin, C. R. Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules 1988, 21, 1334–1339.

    Article  CAS  Google Scholar 

  37. Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Hammond, P. T.; Park, H. Innovative polymer nanocomposite electrolytes: Nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 2011, 5, 5167–5174.

    Article  CAS  Google Scholar 

  38. Song, J.; Han, O. H.; Han, S. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes. Angew. Chem., Int. Ed. 2015 54, 3615–3620.

    Article  CAS  Google Scholar 

  39. Yameen, B.; Kaltbeitzel, A.; Langer, A.; Müller, F.; Gösele, U.; Knoll, W.; Azzaroni, O. Highly proton-conducting self-humidifying microchannels generated by copolymer brushes on a scaffold. Angew. Chem., Int. Ed. 2009, 48, 3124–3128.

    Article  CAS  Google Scholar 

  40. Yang, F.; Xu, G.; Dou, Y. B.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J. R.; Chen, B. L. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2017, 2, 877–883.

    Article  CAS  Google Scholar 

  41. Yang, Y.; He, X. Y.; Zhang, P. H.; Andaloussi, Y. H.; Zhang, H. L.; Jiang, Z. Y.; Chen, Y.; Ma, S. Q.; Cheng, P.; Zhang, Z. J. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew. Chem., Int. Ed. 2020, 59, 3678–3684.

    Article  CAS  Google Scholar 

  42. Peng, Q.; Li, Y.; Qiu, M.; Shi, B. B.; He, X. Y.; Fan, C. Y.; Mao, X. L.; Wu, H.; Jiang, Z. Y. Enhancing proton conductivity of sulfonated poly(ether ether ketone)-based membranes by incorporating phosphotungstic-acid-coupled graphene oxide. Ind. Eng. Chem. Res. 2021, 60, 4460–4470.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. U2004199), the Excellent Youth Foundation of Henan Province (No. 202300410373), China Postdoctoral Science Foundation (Nos. 2021T140615 and 2020M672281), the Natural Science Foundation of Henan Province (No. 212300410285), and the Young Talent Support Project of Henan Province (No. 2021HYTP028). The center for advanced analysis and computational science, Zhengzhou University is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Wang.

Electronic Supplementary Material

12274_2022_4073_MOESM1_ESM.pdf

Manipulating the ionic nanophase of Nafion by in-situ precise hybridization with polymer quantum dot towards highly enhanced fuel cell performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhou, Z., Wang, Y. et al. Manipulating the ionic nanophase of Nafion by in-situ precise hybridization with polymer quantum dot towards highly enhanced fuel cell performances. Nano Res. 15, 4124–4131 (2022). https://doi.org/10.1007/s12274-022-4073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4073-4

Keywords

Navigation