Skip to main content
Log in

Five-fold twinned Ir-alloyed Pt nanorods with high C1 pathway selectivity for ethanol electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient and robust electrocatalysts toward ethanol oxidation reaction (EOR) with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells (DEFCs). Unfortunately, current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol. Herein, we report a novel electrocatalyst of five-fold twinned (FFT) Ir-alloyed Pt nanorods (NRs) toward EOR. Such FFT Pt-Ir NRs bounded by five (100) facets on the sides and ten (111) facets at two ends possess high percentage of (100) facets with tensile strain. Owing to the inherent characteristics of the FFT NR and Ir alloying, the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity (MA) of 4.18 A·mgPt−1, a specific activity (SA) of 10.22 mA·cm−2, and a Faraday efficiency of 61.21% for the C1 pathway, which are 6.85, 5.62, and 7.70 times higher than those of a commercial Pt black, respectively. Besides, our catalyst also exhibits robust durability. The large percentage of open tensile-strained (100) facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates, leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway, and effectively suppress the deactivation of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  CAS  Google Scholar 

  2. Sheng, T.; Xu, Y. F.; Jiang, Y. X.; Huang, L.; Tian, N.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 2016, 49, 2569–2577.

    Article  CAS  Google Scholar 

  3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nerskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 4998.

    Article  Google Scholar 

  4. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

    Article  CAS  Google Scholar 

  5. Zhang, G. L.; Liu, Z. Y.; Xiao, Z. L.; Huang, J. L.; Li, Q. B.; Wang, Y. X.; Sun, D. H. Ni2P-graphite nanoplatelets supported Au-Pd core-shell nanoparticles with superior electrochemical properties. J. Phys. Chem. C 2015, 119, 10469–10477.

    Article  CAS  Google Scholar 

  6. Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Hu, H. W.; Wang, C. Z.; Huang, C. D.; Wang, Y. X. Tailoring the morphology of Pt3Cu1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075–3084.

    Article  CAS  Google Scholar 

  7. Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, 1603068.

    Article  Google Scholar 

  8. Rizo, R.; Arán-Ais, R. M.; Padgett, E.; Muller, D. A.; Lázaro, M. J.; Solla-Gullón, J.; Feliu, J. M.; Pastor, E.; Abruña, H. D. Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2018, 140, 3791–3797.

    Article  CAS  Google Scholar 

  9. Yang, Z. Z.; Shi, Y.; Wang, X. S.; Zhang, G. L.; Cui, P. Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell. J. Power Sources 2019, 431, 125–134.

    Article  CAS  Google Scholar 

  10. Zhang, J. W.; Ye, J. Y.; Fan, Q. Y.; Jiang, Y. T.; Zhu, Y. F.; Li, H. Q.; Cao, Z. M.; Kuang, Q.; Cheng, J.; Zheng, J. et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J. Am. Chem. Soc. 2018, 140, 11232–11240.

    Article  CAS  Google Scholar 

  11. Zhang, G. L.; Shi, Y.; Fang, Y.; Cao, D. J.; Guo, S. Y.; Wang, Q.; Chen, Y. Z.; Cui, P.; Cheng, S. Ordered PdCu-based core-shell concave nanocubes enclosed by high-index facets for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2021, 13, 33147–33156.

    Article  CAS  Google Scholar 

  12. Li, S.; Wang, Y.; Li, Y.; Fang, X.; Liu, Y.; Li, M.; Wang, Z.; Gao, Y.; Sun, H.; Gao, F.; Zhang, X.; Dai, X. PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation. Nano Res. 2021, https://doi.org/10.1007/s12274-021-3881-2.

  13. Ghosh, S.; Ramos, L. and Remita, H. Swollen hexagonal liquid crystals as smart nanoreactors: implementation in materials chemistry for energy applications. Nanoscale 2018, 10, 5793–5819.

    Article  CAS  Google Scholar 

  14. Bai, S. X.; Xu, Y.; Cao, K. L.; Huang, X. Q. Selective ethanol oxidation reaction at the Rh-SnO2 interface. Adv. Mater. 2021, 33, 2005767.

    Article  CAS  Google Scholar 

  15. Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

    Article  CAS  Google Scholar 

  16. Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

    Article  Google Scholar 

  17. Liu, K.; Wang, W.; Guo, P. H.; Ye, J. Y.; Wang, Y. Y.; Li, P. T.; Lyu, Z. X.; Geng, Y. S.; Liu, M. C.; Xie, S. F. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv. Funct. Mater. 2019, 29, 1806300.

    Article  Google Scholar 

  18. Marinkovic, N. S.; Li, M.; Adzic, R. R. Pt-based catalysts for electrochemical oxidation of ethanol. Top. Curr. Chem. 2019, 377, 11.

    Article  Google Scholar 

  19. Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C-C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

    Article  CAS  Google Scholar 

  20. Shen, Y.; Gong, B.; Xiao, K. J.; Wang, L. In situ assembly of ultrathin PtRh nanowires to graphene nanosheets as highly efficient electrocatalysts for the oxidation of ethanol. ACS Appl. Mater. Interfaces 2017, 9, 3535–3543.

    Article  CAS  Google Scholar 

  21. Antoniassi, R. M.; Silva, J. C. M.; Lopes, T.; Neto, A. O.; Spinacé, E. V. Carbon-supported Pt nanoparticles with (100) preferential orientation with enhanced electrocatalytic properties for carbon monoxide, methanol and ethanol oxidation in acidic medium. Int. J. Hydrogen Energy 2017, 42, 28786–28796.

    Article  CAS  Google Scholar 

  22. Rao, L.; Jiang, Y. X.; Zhang, B. W.; Cai, Y. R.; Sun, S. G. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys. Chem. Chem. Phys. 2014, 16, 13662–13671.

    Article  CAS  Google Scholar 

  23. Wang, H. F.; Liu, Z. P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 2008, 130, 10996–11004.

    Article  CAS  Google Scholar 

  24. Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602–613.

    Article  CAS  Google Scholar 

  25. Chang, Q. W.; Kattel, S.; Li, X.; Liang, Z. X.; Tackett, B. M.; Denny, S. R.; Zhang, P.; Su, D.; Chen, J. G.; Chen, Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 2019, 9, 7618–7625.

    Article  CAS  Google Scholar 

  26. Huang, X. Q.; Zheng, N. F. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602–4603.

    Article  CAS  Google Scholar 

  27. Lu, N.; Chen, W.; Fang, G. Y.; Chen, B.; Yang, K. Q.; Yang, Y.; Wang, Z. C.; Huang, S. M.; Li, Y. D. 5-fold twinned nanowires and single twinned right bipyramids of Pd: Utilizing small organic molecules to tune the etching degree of O2/halides. Chem. Mater. 2014, 26, 2453–2459.

    Article  CAS  Google Scholar 

  28. Huang, H. W.; Ruditskiy, A.; Choi, S. I.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212.

    Article  CAS  Google Scholar 

  29. Luo, S. P.; Zhang, L.; Liao, Y. J.; Li, L. X.; Yang, Q.; Wu, X. T.; Wu, X. Y.; He, D. S.; He, C. Y.; Chen, W. et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, 2008508.

    Article  CAS  Google Scholar 

  30. Liu, M. X.; Xie, M.; Jiang, Y. L.; Liu, Z. J.; Lu, Y. M.; Zhang, S. M.; Zhang, Z. X.; Wang, X. X.; Liu, K.; Zhang, Q. et al. Core-shell nanoparticles with tensile strain enable highly efficient electrochemical ethanol oxidation. J. Mater. Chem. A 2021, 9, 15373–15380.

    Article  CAS  Google Scholar 

  31. Yoon, J.; Khi, N. T.; Kim, H.; Kim, B.; Baik, H.; Back, S.; Lee, S. M.; Lee, S. W.; Kwon, S. J.; Lee, K. High yield synthesis of catalytically active five-fold twinned Pt nanorods from a surfactant-ligated precursor. Chem. Commun. 2013, 49, 573–575.

    Article  CAS  Google Scholar 

  32. Fang, Y.; Cao, D. J.; Shi, Y. Y.; Guo, S. Y.; Wang, Q.; Zhang, G. L.; Cui, P.; Cheng, S. Highly porous Pt2Ir alloy nanocrystals as a superior catalyst with high-efficiency C-C bond cleavage for ethanol electrooxidation. J. Phys. Chem. Lett. 2021, 12, 6773–6780.

    Article  CAS  Google Scholar 

  33. Roca-Ayats, M.; Guillén-Villafuerte, O.; García, G.; Soler-Vicedo, M.; Pastor, E.; Martínez-Huerta, M. V. PtSn nanoparticles supported on titanium carbonitride for the ethanol oxidation reaction. Appl. Catal. B: —Environ. 2018, 237, 382–391.

    Article  CAS  Google Scholar 

  34. Wang, K.; Sriphathoorat, R.; Luo, S. P.; Tang, M.; Du, H. Y.; Shen, P. K. Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. J. Mater. Chem. A 2016, 4, 13425–13430.

    Article  CAS  Google Scholar 

  35. Zhang, G. L.; Zhang, Z. X. Ir3Pb alloy nanodendrites with high performance for ethanol electrooxidation and their enhanced durability by alloying trace Au. Inorg. Chem. Front. 2020, 7, 2231–2240.

    Article  CAS  Google Scholar 

  36. Du, W. X.; Wang, Q.; Saxner, D.; Deskins, N. A.; Su, D.; Krzanowski, J. E.; Frenkel, A. I.; Teng, X. W. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15172–15183.

    Article  CAS  Google Scholar 

  37. Shi, Y.; Fang, Y.; Zhang, G. L.; Wang, X. S.; Cui, P.; Wang, Q.; Wang, Y. X. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir. J. Mater. Chem. A 2020, 8, 3795–3802.

    Article  CAS  Google Scholar 

  38. Jeong, S.; Liu, Y.; Zhong, Y. X.; Zhan, X.; Li, Y. D.; Wang, Y.; Cha, P. M.; Chen, J.; Ye, X. C. Heterometallic seed-mediated growth of monodisperse colloidal copper nanorods with widely tunable plasmonic resonances. Nano Lett. 2020, 20, 7263–7271.

    Article  CAS  Google Scholar 

  39. Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng, L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416–9421.

    Article  CAS  Google Scholar 

  40. Narayanan, S.; Cheng, G. M.; Zeng, Z.; Zhu, Y.; Zhu, T. Strain hardening and size effect in five-fold twinned Ag nanowires. Nano Lett. 2015, 15, 4037–4044.

    Article  CAS  Google Scholar 

  41. Sun, X. H.; Jiang, K. K.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.

    Article  CAS  Google Scholar 

  42. Yang, Y. N.; Zhang, J. W.; Wei, Y. J.; Chen, Q. L.; Cao, Z. M.; Li, H. Q.; Chen, J. Y.; Shi, J. L.; Xie, Z. X.; Zheng, L. S. Solvent-dependent evolution of cyclic penta-twinned rhodium icosahedral nanocrystals and their enhanced catalytic properties. Nano Res. 2018, 11, 656–664.

    Article  CAS  Google Scholar 

  43. Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex — type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 2018, 30, 1804074.

    Article  Google Scholar 

  44. Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

    Article  CAS  Google Scholar 

  45. Huang, J.; Liu, Y.; Xu, M. J.; Wan, C. Z.; Liu, H. T.; Li, M. F.; Huang, Z. H.; Duan, X. F.; Pan, X. Q.; Huang, Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 2019, 19, 5431–5436.

    Article  CAS  Google Scholar 

  46. Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect?. Energy Environ. Sci. 2015, 8, 177–181.

    Article  CAS  Google Scholar 

  47. Lee, Y. W.; Hwang, E. T.; Kwak, D. H.; Park, K. W. Preparation and characterization of PtIr alloy dendritic nanostructures with superior electrochemical activity and stability in oxygen reduction and ethanol oxidation reactions. Catal. Sci. Technol. 2016, 6, 569–576.

    Article  CAS  Google Scholar 

  48. Yuan, X. L.; Jiang, B.; Cao, M. H.; Zhang, C. Y.; Liu, X. Z.; Zhang, Q. H.; Lyu, F. L.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265–272.

    Article  CAS  Google Scholar 

  49. Lin, H. H.; Muzzio, M.; Wei, K. C.; Zhang, P.; Li, J. R.; Li, N.; Yin, Z. Y.; Su, D.; Sun, S. H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: Enhanced activity and C1 pathway selectivity. ACS Appl. Energy Mater. 2019, 2, 8701–8706.

    Article  CAS  Google Scholar 

  50. Peng, H. C.; Ren, J.; Wang, Y. C.; Xiong, Y.; Wang, Q. C.; Li, Q.; Zhao, X.; Zhan, L. S.; Zheng, L. R.; Tang, Y. G. et al. One-stone, two birds: Alloying effect and surface defects induced by Pt on Cu2−xSe nanowires to boost C-C bond cleavage for electrocatalytic ethanol oxidation. Nano Energy 2021, 88, 106307.

    Article  CAS  Google Scholar 

  51. Li, H. Q.; Fan, Q. Y.; Ye, J. Y.; Cao, Z. M.; Ma, Z. F.; Jiang, Y. Q.; Zhang, J. W.; Cheng, J.; Xie, Z. X.; Zheng, L. S. Excavated Rh nanobranches boost ethanol electro-oxidation. Mater. Today Energy 2019, 11, 120–127.

    Article  CAS  Google Scholar 

  52. Li, H. Q.; Ye, J. Y.; Li, X. M.; Zhang, J. W.; Zhu, Y. F.; Zhou, Z. Y.; Xue, Y. K.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated RhNi alloy nanobranches enable superior CO-tolerance and CO2 selectivity at low potentials toward ethanol electro-oxidation. J. Mater. Chem. A 2019, 7, 26266–26271.

    Article  CAS  Google Scholar 

  53. Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

    Article  CAS  Google Scholar 

  54. Yang, X. B.; Liang, Z. P.; Chen, S.; Ma, M. J.; Wang, Q.; Tong, X. L.; Zhang, Q. H.; Ye, J. Y.; Gu, L.; Yang, N. J. A phosphorus-doped Ag@Pd catalyst for enhanced C-C bond cleavage during ethanol electrooxidation. Small 2020, 16, 2004727.

    Article  CAS  Google Scholar 

  55. Lan, B.; Huang, M.; Wei, R. L.; Wang, C. N.; Wang, Q. L.; Yang, Y. Y. Ethanol electrooxidation on rhodium-lead catalysts in alkaline media: High mass activity, long-term durability, and considerable CO2 selectivity. Small 2020, 16, 2004380.

    Article  CAS  Google Scholar 

  56. Wang, M. C.; Ding, R. M.; Xiao, Y. C.; Wang, H. X.; Wang, L. C.; Chen, C. M.; Mu, Y. W.; Wu, G. P.; Lv, B. L. CoP/RGO-Pd hybrids with heterointerfaces as highly active catalysts for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2020, 12, 28903–28914.

    Article  CAS  Google Scholar 

  57. Han, S. H.; Liu, H. M.; Chen, P.; Jiang, J. X.; Chen, Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 2018, 8, 1801326.

    Article  Google Scholar 

  58. Liang, Z. X.; Song, L.; Deng, S. Q.; Zhu, Y. M.; Stavitski, E.; Adzic, R. R.; Chen, J. Y.; Wang, J. X. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629–9636.

    Article  CAS  Google Scholar 

  59. Miao, B.; Wu, Z. P.; Xu, H.; Zhang, M. H.; Chen, Y. F.; Wang, L. C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation. Chem. Phys. Lett. 2017, 688, 92–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21908036), the China Postdoctoral Science Foundation (No. 2019M662143), the Natural Science Foundation of Anhui Province (No. 2008085QB74), and the Fundamental Research Funds for the Central Universities (No. JZ2021HGTB0116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genlei Zhang.

Ethics declarations

The authors declare no competing financial interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Guo, S., Cao, D. et al. Five-fold twinned Ir-alloyed Pt nanorods with high C1 pathway selectivity for ethanol electrooxidation. Nano Res. 15, 3933–3939 (2022). https://doi.org/10.1007/s12274-021-4062-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4062-z

Keywords

Navigation