Skip to main content
Log in

Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel porous and crystalline two-dimensional (2D) electrochemically active covalent organic framework (COF) based on orthoquinone units has been prepared as an innovative approach towards the development of organic cathode materials with multiple redox sites as an efficient electrocatalyst for the oxygen reduction reaction (ORR). In contrast with most of the previously reported COFs as electrocatalysts for the ORR, the electrocatalytic application of this material towards ORR has been investigated without adding any metal or conductive supporting material and avoiding any additional carbonization step. Additionally, the electrochemical properties of the COF material have been compared with two analogue amorphous frameworks with similar chemical composition, which points out the important role of the enhanced crystallinity and porosity of the COF network in its superior performance as an electrocatalyst towards ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serrano, E.; Rus, G.; García-Martínez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384.

    Article  CAS  Google Scholar 

  2. Capellán-Pérez, I.; Mediavilla, M.; De Castro, C.; Carpintero, Ó.; Miguel, L. J. Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 2014, 77, 641–666.

    Article  Google Scholar 

  3. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    Article  CAS  Google Scholar 

  4. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  CAS  Google Scholar 

  5. Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

    Article  CAS  Google Scholar 

  6. Sealy, C. The problem with platinum. Mater. Today 2008, 11, 65–68.

    Article  CAS  Google Scholar 

  7. Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

    Article  Google Scholar 

  8. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    Article  CAS  Google Scholar 

  9. Song, Y. P.; Sun, Q.; Aguila B.; Ma, S. Q. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410.

    Article  Google Scholar 

  10. Cui, X.; Lei, S.; Wang, A. C.; Gao, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 104525.

    Article  CAS  Google Scholar 

  11. Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L. Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.

    Article  CAS  Google Scholar 

  12. Zhang, H.; Zhu, M. S.; Schmidt, O. G.; Chen, S. L.; Zhang, K. Covalent organic frameworks for efficient energy electrocatalysis: Rational design and progress. Adv. Energy Sustain. Res. 2021, 2, 2000090.

    Article  Google Scholar 

  13. Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1703646.

    Article  Google Scholar 

  14. Liu, H.; Yi, S. J.; Wu, Y. F.; Wu, H.; Zhou, J. R.; Liang, W. J.; Cai, J. F.; Xu, H. An efficient Co-N/C electrocatalyst for oxygen reduction facilely prepared by tuning cobalt species content. Int. J. Hydrogen Energy 2020, 45, 16105–16113.

    Article  CAS  Google Scholar 

  15. Hosokawa, T.; Tsuji, M.; Tsuchida, K.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. J. Mater. Chem. A 2021, 9, 11073–11080.

    Article  CAS  Google Scholar 

  16. Yue, J. Y.; Wang, Y. T.; Wu, X.; Yang, P.; Ma, Y.; Liu, X. H.; Tang, B. Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem. Commun. 2021, 57, 12619–12622.

    Article  CAS  Google Scholar 

  17. Ma, W. J.; Yu, P.; Ohsaka, T.; Mao, L. Q. An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochem. Commun. 2015, 52, 53–57.

    Article  CAS  Google Scholar 

  18. Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S. et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786–790.

    Article  CAS  Google Scholar 

  19. Xu, Q.; Qian, J.; Luo, D.; Liu, G. J.; Guo, Y.; Zeng, G. F. Ni/Fe clusters and nanoparticles confined by covalent organic framework derived carbon as highly active catalysts toward oxygen reduction reaction and oxygen evolution reaction. Adv. Sustain. Syst. 2020, 4, 2000115.

    Article  CAS  Google Scholar 

  20. Xu, Q.; Tang, Y. P.; Zhang, X. B.; Oshima, Y.; Chen, Q. H.; Jiang, D. L. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.

    Article  Google Scholar 

  21. Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J. G.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481–5488.

    Article  CAS  Google Scholar 

  22. Yang, C.; Maenosono, S.; Duan, J. G.; Zhang, X. B. COF-derived N, P Co-doped carbon as a metal-free catalyst for highly efficient oxygen reduction reaction. ChemNanoMat 2019, 5, 957–963.

    Article  CAS  Google Scholar 

  23. Jiang, T.; Jiang, W. C.; Li, Y. L.; Xu, Y. S.; Zhao, M. Y.; Deng, M. Y.; Wang, Y. Facile regulation of porous N-doped carbon-based catalysts from covalent organic frameworks nanospheres for highly-efficient oxygen reduction reaction. Carbon 2021, 180, 92–100.

    Article  CAS  Google Scholar 

  24. Guo, Y.; Yang, S.; Xu, Q.; Wu, P.; Jiang, Z.; Zeng, G. F. Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 13625–13630.

    Article  CAS  Google Scholar 

  25. Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 2014, 5, 5040.

    Article  CAS  Google Scholar 

  26. Guo, J. N.; Lin, C. Y.; Xia, Z. H.; Xiang, Z. H. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 12567–12572.

    Article  CAS  Google Scholar 

  27. Cui, X.; Gao, L. K.; Ma, R.; Wei, Z. N.; Lu, C. H.; Li, Z. L.; Yang, Y. K. Pyrolysis-free covalent organic framework-based materials for efficient oxygen electrocatalysis. J. Mater. Chem. A 2021, 9, 20985–21004.

    Article  CAS  Google Scholar 

  28. Banerjee, S.; Anayah, R. I.; Gerke, C. S.; Thoi, V. S. From molecules to porous materials: Integrating discrete electrocatalytic active sites into extended frameworks. ACS Cent. Sci. 2020, 6, 1671–1684.

    Article  CAS  Google Scholar 

  29. Wielend, D.; Vera-Hidalgo, M.; Seelajaroen, H.; Sariciftci, N. S.; Pérez, E. M.; Whang, D. R. Mechanically interlocked carbon nanotubes as a stable electrocatalytic platform for oxygen reduction. ACS Appl. Mater. Interfaces 2020, 12, 32615–32621.

    Article  CAS  Google Scholar 

  30. Ajjan, F. N.; Jafari, M. J.; Rębiś, T.; Ederth, T.; Inganäs, O. Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material. J. Mater. Chem. A 2015, 3, 12927–12937.

    Article  CAS  Google Scholar 

  31. Tammeveski, K.; Kontturi, K.; Nichols, R. J.; Potter, R. J.; Schiffrin, D. J. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J. Electroanal. Chem. 2001, 515, 101–112.

    Article  CAS  Google Scholar 

  32. Sarapuu, A.; Vaik, K.; Schiffrin, D. J.; Tammeveski, K. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 2003, 541, 23–29.

    Article  CAS  Google Scholar 

  33. Zhang, J. Y.; Zhang, G.; Jin, S. Y.; Zhou, Y. J.; Ji, Q. H.; Lan, H. C.; Liu, H. J.; Qu, J. H. Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 2020, 163, 154–161.

    Article  CAS  Google Scholar 

  34. Chi, X. W.; Hao, F.; Zhang, J. B.; Wu, X. W.; Zhang, Y.; Gheytani, S.; Wen, Z. Y.; Yao, Y. A high-energy quinone-based all-solid-state sodium metal battery. Nano Energy 2019, 62, 718–724.

    Article  CAS  Google Scholar 

  35. Li, Q.; Li, D. N.; Wang, H. D.; Wang, H. G.; Li, Y. H.; Si, Z. J.; Duan, Q. Conjugated carbonyl polymer-based flexible cathode for superior lithium-organic batteries. ACS Appl. Mater. Interfaces 2019, 11, 28801–28808.

    Article  CAS  Google Scholar 

  36. Yao, C. J.; Wu, Z. Z.; Xie, J.; Yu, F.; Guo, W.; Xu, Z. J.; Li, D. S.; Zhang, S. Q.; Zhang, Q. C. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem 2020, 13, 2457–2463.

    Article  CAS  Google Scholar 

  37. García-Arroyo, P.; Navalpotro, P.; Mancheño, M. J.; Salagre, E.; Cabrera-Trujillo, J. J.; Michel, E. G.; Segura, J. L. Carretero-González, J. Acidic triggering of reversible electrochemical activity in a pyrenetetraone-based 2D polymer. Polymer 2021, 212, 123273.

    Article  Google Scholar 

  38. Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16, 841–848.

    Article  CAS  Google Scholar 

  39. Mehr, S. H. M.; Depmeier, H.; Fukuyama, K.; Maghami, M.; MacLachlan, M. J. Formylation of phenols using formamidine acetate. Org. Biomol. Chem. 2017, 15, 581–583.

    Article  CAS  Google Scholar 

  40. Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    Article  CAS  Google Scholar 

  41. Rao, C. V.; Ishikawa, Y. Activity, selectivity, and anion-exchange membrane fuel cell performance of virtually metal-free nitrogendoped carbon nanotube electrodes for oxygen reduction reaction. J. Phys. Chem. C 2012, 116, 4340–4346.

    Article  Google Scholar 

  42. Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. et al. Polymer-bound pyrene-4, 5, 9, 10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 2012, 134, 19694–19700.

    Article  CAS  Google Scholar 

  43. Ni, Y. X.; Lu, Y.; Zhang, K.; Chen, J. Aromaticity/antiaromaticity effect on activity of transition metal macrocyclic complexes towards electrocatalytic oxygen reduction. ChemSusChem 2021, 14, 1835–1839.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by MICINN (Nos. PID2019-106268GB-C33, CTQ2017-84309-C2-1-R, RED2018-102412-T, and FIS2017-82415-R) and Comunidad Autónoma de Madrid Transnanoavansens Program (No. S2018/NMT-4349). PGA is acknowledged to Comunidad de Madrid for a predoctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Encarnación Lorenzo or José L. Segura.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Arroyo, P., Martínez-Periñán, E., Cabrera-Trujillo, J.J. et al. Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction. Nano Res. 15, 3907–3912 (2022). https://doi.org/10.1007/s12274-021-4043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4043-2

Keywords

Navigation