Skip to main content
Log in

Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solar-driven water evaporation is a sustainable method to purify seawater. Nevertheless, traditional volumetric water-evaporation systems suffer from the poor sunlight absorption and inefficient light-to-thermal conversion. Also, their anti-bacterial and anti-fouling performances are crucial for the practical application. Herein, we introduce reduced graphene oxide (RGO) with broadband absorbance across the entire solar spectrum, and polypyrrole (PPy), an antibacterial polymer with efficient solar absorption and low thermal conductivity, to develop integrated RGO/PPy aerogel as both the solar absorber and evaporator for highly efficient solar-driven steam generation. As a result, the RGO/PPy aerogel shows strong absorption and good photothermal performance, leading to an evaporation rate of 1.44 kg·m−2·h−1 and high salt rejection (up to 99.99%) for real seawater, with photothermal conversion efficiency > 90% under one sun irradiation. The result is attributed to the localized heat at the air—water interface by the RGO/PPy and its porous nature with functional groups that facilitates the water evaporation. Moreover, the RGO/PPy demonstrates excellent durability and antibacterial efficiency close to 100% for 12 h, crucial characteristics for long-term application. Our well-designed RGO/PPy aerogel with efficient water desalination performance and antibacterial property provides a straightforward approach to improve the solar-driven evaporation performance by multifunctional materials integration, and offers a viable route towards practical seawater desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, S. S.; Jiang, Q. S.; Wu, X. H.; Ghim, D.; Derami, H. G.; Chou, P. I.; Jun, Y. S.; Singamaneni, S. Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A 2019, 7, 24092–24123.

    CAS  Google Scholar 

  2. Zhao, H. Y.; Zhou, J.; Yu, Z. L.; Chen, L. F.; Zhan, H. J.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Lotus-inspired evaporator with Janus wettability and bimodal pores for solar steam generation. Cell Rep. Phys. Sci. 2020, 1, 100074.

    Google Scholar 

  3. Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

    CAS  Google Scholar 

  4. Zhao, F.; Zhou, X.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R.; Qu, L.; Yu, G. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    CAS  Google Scholar 

  5. Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

    CAS  Google Scholar 

  6. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

    Google Scholar 

  7. Zhang, Y. X.; Xiong, T.; Nandakumar, D. K.; Tan, S. C. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 2020, 7, 1903478.

    CAS  Google Scholar 

  8. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

    CAS  Google Scholar 

  9. Li, H. R.; Yan, Z.; Li, Y.; Hong, W. P. Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges. Water Res. 2020, 177, 115770.

    CAS  Google Scholar 

  10. Liu, F. H.; Lai, Y. J.; Zhao, B. Y.; Bradley, R.; Wu, W. P. Photothermal materials for efficient solar powered steam generation. Front. Chem. Sci. Eng. 2019, 13, 636–653.

    CAS  Google Scholar 

  11. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343.

    CAS  Google Scholar 

  12. Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

    CAS  Google Scholar 

  13. Zhou, Y.; Ding, T. P.; Gao, M. M.; Chan, K. H.; Cheng, Y.; He, J. Q.; Ho, G. W. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 2020, 77, 105102.

    CAS  Google Scholar 

  14. Liu, Z. X.; Zhou, Z.; Wu, N. Y.; Zhang, R. Q.; Zhu, B.; Jin, H.; Zhang, Y. M.; Zhu, M. F.; Chen, Z. G. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 2021, 15, 13007–13018.

    CAS  Google Scholar 

  15. Zhang, Y. X.; Zhang, H.; Xiong, T.; Qu, H.; Koh, J. J.; Nandakumar, D. K.; Wang, J.; Tan, S. C. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation. Energy Environ. Sci. 2020, 13, 4891–4902.

    CAS  Google Scholar 

  16. Shao, Y.; Tang, J. B.; Li, N. B.; Sun, T. Y.; Yang, L. P.; Chen, D.; Zhi, H.; Wang, D. J.; Liu, H.; Xue, G. B. Designing a bioinspired synthetic tree by unidirectional freezing for simultaneous solar steam generation and salt collection. Eco. Mat. 2020, 2, e12018.

    Google Scholar 

  17. Zhang, Y. X.; Xiong, T.; Suresh, L.; Qu, H.; Zhang, X. P.; Zhang, Q.; Yang, J. C.; Tan, S. C. Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and in situ energy generation. ACS Energy Lett. 2020, 5, 3397–3404.

    CAS  Google Scholar 

  18. Wang, Y. D.; Wu, X.; Shao, B.; Yang, X. F.; Owens, G.; Xu, H. L. Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 2020, 65, 1380–1388.

    CAS  Google Scholar 

  19. Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

    CAS  Google Scholar 

  20. Shao, B.; Wu, X.; Wang, Y. D.; Gao, T.; Liu, Z. Q.; Owens, G.; Xu, H. L. A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 24703–24709.

    CAS  Google Scholar 

  21. Wang, Y.; Liu, H. Z.; Zhu, J. Solar thermophotovoltaics: Progress, challenges, and opportunities. APL Mater. 2019, 7, 080906.

    Google Scholar 

  22. Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. A 2019, 7, 14620–14628.

    CAS  Google Scholar 

  23. Wang, X. Q.; Ou, G.; Wang, N.; Wu, H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 2016, 8, 9194–9199.

    CAS  Google Scholar 

  24. Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

    Google Scholar 

  25. Salam, M. A.; Obaid, A. Y.; El-Shishtawy, R. M.; Mohamed, S. A. Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver Nano particles and their application in water disinfection. RSC Adv. 2017, 7, 16878–16884.

    Google Scholar 

  26. Varesano, A.; Vineis, C.; Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Mazzuchetti, G. Antibacterial efficacy of polypyrrole in textile applications. Fibers Polym. 2013, 14, 36–42.

    CAS  Google Scholar 

  27. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    CAS  Google Scholar 

  28. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    CAS  Google Scholar 

  29. Li, C. X.; Yang, J.; Pachfule, P.; Li, S.; Ye, M. Y.; Schmidt, J.; Thomas, A. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nat. Commun. 2020, 11, 4712.

    CAS  Google Scholar 

  30. Fu, Y.; Wang, G.; Mei, T.; Li, J. H.; Wang, J. Y.; Wang, X. B. Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustainable Chem. Eng. 2017, 5, 4665–4671.

    CAS  Google Scholar 

  31. Wang, X.; Liu, Q. C.; Wu, S. Y.; Xu, B. X.; Xu, H. X. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 2019, 31, 1807716.

    Google Scholar 

  32. Chen, J. X.; Li, B.; Hu, G. X.; Aleisa, R.; Lei, S.; Yang, F.; Liu, D. L.; Lyu, F. L.; Wang, M. Z.; Ge, X. W. et al. Integrated evaporator for efficient solar-driven interfacial steam generation. Nano Lett. 2020, 20, 6051–6058.

    CAS  Google Scholar 

  33. Xiao, C. H.; Liang, W. D.; Hasi, Q. M.; Chen, L. H.; He, J. X.; Liu, F.; Wang, C. J.; Sun, H. X.; Zhu, Z. Q.; Li, A. Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination. Mater. Today Energy 2020, 16, 100417.

    Google Scholar 

  34. Li, X. Q.; Li, J. L.; Lu, J. Y.; Xu, N.; Chen, C. L.; Min, X. Z.; Zhu, B.; Li, H. X.; Zhou, L.; Zhu, S. N. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2, 1331–1338.

    CAS  Google Scholar 

  35. Li, X. Q.; Ni, G.; Cooper, T.; Xu, N.; Li, J. L.; Zhou, L.; Hu, X. Z.; Zhu, B.; Yao, P. C.; Zhu, J. Measuring conversion efficiency of solar vapor generation. Joule 2019, 3, 1798–1803.

    Google Scholar 

  36. Jang, H.; Choi, J.; Lee, H.; Jeon, S. Corrugated wood fabricated using laser-induced graphitization for salt-resistant solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 30320–30327.

    CAS  Google Scholar 

  37. Cheng, G.; Wang, X. Z.; Liu, X.; He, Y. R.; Balakin, B. V. Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane. Sol. Energy 2019, 194, 415–430.

    CAS  Google Scholar 

  38. Bai, B. L.; Yang, X. H.; Tian, R.; Ren, W. C.; Suo, R.; Wang, H. B. High-efficiency solar steam generation based on blue brick-graphene inverted cone evaporator. Appl. Therm. Eng. 2019, 163, 114379.

    CAS  Google Scholar 

  39. Deng, X.; Nie, Q. C.; Wu, Y.; Fang, H. S.; Zhang, P. X.; Xie, Y. S. Nitrogen-doped unusually superwetting, thermally insulating, and elastic graphene aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 26200–26212.

    CAS  Google Scholar 

  40. Wu, S. H.; Gong, B. Y.; Yang, H. C.; Tian, Y. K.; Xu, C. X.; Guo, X. Z.; Xiong, G. P.; Luo, T. F.; Yan, J. H.; Cen, K. F. et al. Plasmamade graphene nanostructures with molecularly dispersed f and Na sites for solar desalination of oil-contaminated seawater with complete in-water and in-air oil rejection. ACS Appl. Mater. Interfaces 2020, 12, 38512–38521.

    CAS  Google Scholar 

  41. Wang, F.; Mu, P.; Zhang, Z.; Chen, T.; Li, Y. Z.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Reduced graphene oxide coated hollow polyester fibers for efficient solar steam generation. Energy Technol. 2019, 7, 1900265.

    Google Scholar 

  42. Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

    Google Scholar 

  43. Wang, Y. C.; Wang, C. Z.; Song, X. J.; Megarajan, S. K.; Jiang, H. Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 2018, 6, 963–971.

    CAS  Google Scholar 

  44. Mohsenpour, M.; Motahari, S.; Tajabadi, F.; Najafi, M. Preparation and application of sunlight absorbing ultra-black carbon aerogel/graphene oxide membrane for solar steam generation systems. RSC Adv. 2020, 10, 41780–41790.

    CAS  Google Scholar 

  45. Shan, X. L.; Lin, Y. W.; Zhao, A. Q.; Di, Y. S.; Hu, Y. J.; Guo, Y. J.; Gan, Z. X. Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation. Nanotechnology 2019, 30, 425403.

    CAS  Google Scholar 

  46. Xiong, Z. C.; Zhu, Y. J.; Qin, D. D.; Yang, R. L. Flexible salt-rejecting photothermal paper based on reduced graphene oxide and hydroxyapatite nanowires for high-efficiency solar energy-driven vapor generation and stable desalination. ACS Appl. Mater. Interfaces 2020, 12, 32556–32565.

    CAS  Google Scholar 

  47. Kuang, Y. D.; Chen, C. J.; He, S. M.; Hitz, E. M.; Wang, Y. L.; Gan, W. T.; Mi, R. Y.; Hu, L. B. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498.

    Google Scholar 

  48. Wang, Y. C.; Sun, X. Y.; Tao, S. Y. Rational 3D coiled morphology for efficient solar-driven desalination. Environ. Sci. Technol. 2020, 54, 16240–16248.

    CAS  Google Scholar 

  49. Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 2019, 65, 104006.

    CAS  Google Scholar 

  50. Li, X.; Pang, R. Z.; Li, J. S.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. In situ formation of ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling. Desalination 2013, 324, 48–56.

    CAS  Google Scholar 

  51. Liu, L.; Xiao, X.; Li, X.; Li, M. F.; Li, K.; Liao, X. P.; Shi, B. Immobilization of ytterbium by plant polyphenols for antibiofilm materials with highly effective activity and long-term stability. Ind. Eng. Chem. Res. 2020, 59, 18558–18566.

    CAS  Google Scholar 

  52. Hui, L. W.; Piao, J. G.; Auletta, J.; Hu, K.; Zhu, Y. W.; Meyer, T.; Liu, H. T.; Yang, L. H. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces 2014, 6, 13183–13190.

    CAS  Google Scholar 

  53. Zheng, H. Z.; Ma, R. L.; Gao, M.; Tian, X.; Li, Y. Q.; Zeng, L. W.; Li, R. B. Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety. Sci. Bull. 2018, 63, 133–142.

    CAS  Google Scholar 

  54. Farid, M. U.; Jeong, S.; Seo, D. H.; Ahmed, R.; Lau, C.; Gali, N. K.; Ning, Z.; An, A. K. Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy. Nanoscale 2018, 10, 4475–4487.

    CAS  Google Scholar 

  55. Da Silva, F. A. G. Jr.; Queiroz, J. C.; Macedo, E. R.; Fernandes, A. W.; Freire, N. B.; Da Costa, M. M.; De Oliveira, H. P. Antibacterial behavior of polypyrrole: The influence of morphology and additives incorporation. Mater. Sci. Eng. C 2016, 62, 317–322.

    CAS  Google Scholar 

  56. Facchi, D. P.; Facchi, S. P.; Martins, A. F. N, N, N-trimethyl chitosan and its potential bactericidal activity: Current aspects and technological applications. J. Infect. Dis. Ther. 2016, 4, 291.

    Google Scholar 

  57. Berendjchi, A.; Khajavi, R.; Yousefi, A. A.; Yazdanshenas, M. E. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate. Appl. Surf. Sci. 2016, 363, 264–272.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (Nos. 2018YFA0209500 and 2018YFA0306900) and the National Natural Science Foundation of China (Nos. 21872114 and 21627811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Wang, Xu Hou or Yang Cao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xu, F., Liu, W. et al. Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination. Nano Res. 16, 4219–4224 (2023). https://doi.org/10.1007/s12274-021-4041-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4041-4

Keywords

Navigation