Skip to main content
Log in

Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In heterogeneous catalysis, the precise placement of active components to perform unique functions in cooperation with each other is a tremendous challenge. The migration of matter on micro/nano-scale caused by diffusion is a promising pathway for design of catalytic nanoreactors with precise active sites location and controllable microenvironment through compartmentalization and confinement effects. Herein, we report two categories of mesoporous ZnCoSiOx hollow nanoreactors with different metal distributions and microenvironment engineered by the diffusion behavior of metal species in confined nanospace. Double-shelled hollow structures with well-distributed metal species were obtained by adopting core@shell structured ZnCo-zeolitic imidazolate framework (ZIF)@SiO2 as a template and employing three stages of hydrothermal treatment including the decomposition of ZIF, diffusion of metal species into the silica shell, and Ostwald ripening. Additionally, the formation of yolk@shell structure with a collective (Zn-Co) metal oxide as the yolk was achieved by direct pyrolysis of ZnCo-ZIF@SiO2. In CO2 hydrogenation, ZnCoSiOx with double-shelled hollow structures and yolk@shell structures respectively afford CO and CH4 as main product, which is related with different dispersion and location of active sites in the two catalysts. This study provides an efficient method for the synthesis of catalytic nanoreactors on the basis of insights of the atomic diffusion in confined space at the mesoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  2. Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.

    CAS  Google Scholar 

  3. Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

    CAS  Google Scholar 

  4. Ro, I.; Resasco, J.; Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal. 2018, 8, 7368–7387.

    CAS  Google Scholar 

  5. Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

    Google Scholar 

  6. Yu, Z. H.; Lu, X. B.; Sun, L. H.; Xiong, J.; Ye, L.; Li, X. Y.; Zhang, R.; Ji, N. Metal-loaded hollow carbon nanostructures as nanoreactors: Microenvironment effects and prospects for biomass hydrogenation applications. ACS Sustainable Chem. Eng. 2021, 9, 2990–3010.

    CAS  Google Scholar 

  7. Petrosko, S. H.; Johnson, R.; White, H.; Mirkin, C. A. Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 2016, 138, 7443–7445.

    CAS  Google Scholar 

  8. Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schüth, F. Hollow nano- and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.

    CAS  Google Scholar 

  9. Dong, C.; Yu, Q.; Ye, R. P.; Su, P. P.; Liu, J.; Wang, G. H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 18374–18379.

    CAS  Google Scholar 

  10. Tian, H.; Zhao, J. H.; Wang, X. Y.; Wang, L. Z.; Liu, H.; Wang, G.; Huang, J.; Liu, J.; Lu, G. Q. Construction of hollow mesoporous silica nanoreactors for enhanced photo-oxidations over Au-Pt catalysts. Natl. Sci. Rev. 2020, 7, 1647–1655.

    CAS  Google Scholar 

  11. Su, B. L. Confined nanospace for enhanced photocatalysis. Natl. Sci. Rev. 2021, 8, nwab003.

    Google Scholar 

  12. Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

    CAS  Google Scholar 

  13. Xiao, M. D.; Zhao, C. M.; Chen, H. J.; Yang, B. C.; Wang, J. F. “Ship-in-a-bottle” growth of noble metal nanostructures. Adv. Funct. Mater. 2012, 22, 4526–4532.

    CAS  Google Scholar 

  14. Zou, H. B.; Dai, J. Y.; Suo, J. Q.; Ettelaie, R.; Li, Y.; Xue, N.; Wang, R. W.; Yang, H. Q. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat. Commun. 2021, 12, 4968.

    CAS  Google Scholar 

  15. Kosari, M.; Anjum, U.; Xi, S. B.; Lim, A. M. H.; Seayad, A. M.; Raj, E. A. J.; Kozlov, S. M.; Borgna, A.; Zeng, H. C. Revamping SiO2 spheres by core-shell porosity endowment to construct a mazelike nanoreactor for enhanced catalysis in CO2 hydrogenation to methanol. Adv. Funct. Mater. 2021, 31, 2170345.

    Google Scholar 

  16. Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

    CAS  Google Scholar 

  17. Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

    CAS  Google Scholar 

  18. Díez-Ramírez, J.; Sánchez, P.; Kyriakou, V.; Zafeiratos, S.; Marnellos, G. E.; Konsolakis, M.; Dorado, F. Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. J. CO2 Util. 2017, 21, 562–571.

    Google Scholar 

  19. Zhou, G. L.; Liu, H. R.; Xing, Y. Z.; Xu, S. Y.; Xie, H. M.; Xiong, K. CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure. J. CO2 Util. 2018, 26, 221–229.

    CAS  Google Scholar 

  20. Melaet, G.; Ralston, W. T.; Li, C. S.; Alayoglu, S.; An, K.; Musselwhite, N.; Kalkan, B.; Somorjai, G. A. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. J. Am. Chem. Soc. 2014, 136, 2260–2263.

    CAS  Google Scholar 

  21. Li, W. H.; Nie, X. W.; Jiang, X.; Zhang, A. F.; Ding, F. S.; Liu, M.; Liu, Z. M.; Guo, X. W.; Song, C. S. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl. Catal. B Environ. 2018, 220, 397–408.

    CAS  Google Scholar 

  22. Wang, L. X.; Guan, E. J.; Wang, Y. Q.; Wang, L.; Gong, Z. M.; Cui, Y.; Meng, X. J.; Gates, B. C.; Xiao, F. S. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat. Commun. 2020, 11, 1033.

    CAS  Google Scholar 

  23. Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

    CAS  Google Scholar 

  24. Dostagir, N. H.; Rattanawan, R.; Gao, M.; Ota, J.; Hasegawa, J. Y.; Asakura, K.; Fukouka, A.; Shrotri, A. Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO. ACS Catal. 2021, 11, 9450–9461.

    CAS  Google Scholar 

  25. Jimenez, J. D.; Wen, C.; Royko, M. M.; Kropf, A. J.; Segre, C.; Lauterbach, J. Influence of coordination environment of anchored single-site cobalt catalyst on CO2 hydrogenation. ChemCatChem 2020, 12, 846–854.

    CAS  Google Scholar 

  26. Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535.

    CAS  Google Scholar 

  27. Huang, Z. L.; Fan, L. L.; Zhao, F. G.; Chen, B.; Xu, K. J.; Zhou, S. F.; Zhang, J. L.; Li, Q. B.; Hua, D.; Zhan, G. W. Rational engineering of multilayered Co3O4/ZnO nanocatalysts through chemical transformations from matryoshka-type ZIFs. Adv. Funct. Mater. 2019, 29, 1903774.

    CAS  Google Scholar 

  28. Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2021, 143, 8829–8837.

    CAS  Google Scholar 

  29. Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

    CAS  Google Scholar 

  30. Dang, Q.; Li, Y. C.; Zhang, W.; Kaneti, Y. V.; Hu, M.; Yamauchi, Y. Spatial-controlled etching of coordination polymers. Chin. Chem. Lett. 2021, 32, 635–641.

    CAS  Google Scholar 

  31. Wei, J. T.; Chen, Y. P.; Ma, Y. F.; Shi, X.; Zhang, X. L.; Shi, C. J.; Hu, M.; Liu, J. Precisely engineering architectures of Co/C sub-microreactors for selective Syngas conversion. Small 2021, 17, 2100082.

    CAS  Google Scholar 

  32. Hu, X. R.; Wang, C. H.; Luo, R.; Liu, C.; Qi, J. W.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J.; Li, J. S. Double -shelled hollow ZnO/carbon nanocubes as an efficient solid-phase microextraction coating for the extraction of broad-spectrum pollutants. Nanoscale 2019, 11, 2805–2811.

    CAS  Google Scholar 

  33. Zhang, P.; Guan, B. Y.; Yu, L.; Lou, X. W. Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem., Int. Ed. 2017, 56, 7141–7145.

    CAS  Google Scholar 

  34. Zhan, G. W.; Zeng, H. C. ZIF-67-derived nanoreactors for controlling product selectivity in CO2 hydrogenation. ACS Catal. 2017, 7, 7509–7519.

    CAS  Google Scholar 

  35. Lü, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.

    Google Scholar 

  36. Lin, Q. H.; Zhang, Q. D.; Yang, G. H.; Chen, Q. J.; Li, J.; Wei, Q. H.; Tan, Y. S.; Wan, H. L.; Tsubaki, N. Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5-C11 iso-paraffins from syngas. J. Catal. 2016, 344, 378–388.

    CAS  Google Scholar 

  37. Su, P. P.; Ma, S. S.; Huang, W. J.; Boyjoo, Y.; Bai, S.; Liu, J. Ca2+-doped ultrathin cobalt hydroxyl oxides derived from coordination polymers as efficient electrocatalysts for the oxidation of water. J. Mater. Chem. A 2019, 7, 19415–19422.

    CAS  Google Scholar 

  38. Chen, C.; Hu, Z. P.; Ren, J. T.; Zhang, S. M.; Wang, Z.; Yuan, Z. Y. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Mol. Catal. 2019, 476, 110508.

    CAS  Google Scholar 

  39. Yang, C. S.; Liu, S. H.; Wang, Y. N.; Song, J. M.; Wang, G. S.; Wang, S.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. The interplay between structure and product selectivity of CO2 hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 11242–11247.

    CAS  Google Scholar 

  40. Efremova, A.; Rajkumar, T.; Szamosvölgyi, Á.; Sápi, A.; Baán, K.; Szenti, I.; Gómez-Pérez, J.; Varga, G.; Kiss, J.; Halasi, G. et al. Complexity of a Co3O4 system under ambient-pressure CO2 methanation: Influence of bulk and surface properties on the catalytic performance. J. Phys. Chem. C 2021, 125, 7130–7141.

    CAS  Google Scholar 

  41. Dong, H.; Liu, Q. Three-dimensional networked Ni-phyllosilicate catalyst for CO2 methanation: Achieving high dispersion and enhanced stability at high Ni loadings. ACS Sustainable Chem. Eng. 2020, 8, 6753–6766.

    CAS  Google Scholar 

  42. Tian, H.; Liu, X. Y.; Dong, L. B.; Ren, X. M.; Liu, H.; Price, C. A. H.; Li, Y.; Wang, G. X.; Yang, Q. H.; Liu, J. Enhanced hydrogenation performance over hollow structured Co-CoO,.@N-C capsules. Adv. Sci. 2019, 6, 1900807.

    CAS  Google Scholar 

  43. Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hüvecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

    CAS  Google Scholar 

  44. Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjœr, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 2016, 352, 969–974.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Qihua Yang for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China (No. 22005296), the Natural Science Foundation of Liaoning Province, China (No. 2020-YQ-01), and the LiaoNing Revitalization Talents Program, China (No. XLYC1807077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Electronic supplementary material

12274_2021_4013_MOESM1_ESM.pdf

Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, R., Duyar, M.S. et al. Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation. Nano Res. 16, 5601–5609 (2023). https://doi.org/10.1007/s12274-021-4013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4013-8

Keywords

Navigation