Skip to main content
Log in

Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials with defects are desired for catalysis after the adsorption of monodispersed noble metal atoms. High-performance catalysts with the absolute value of Gibbs free energy (∣∆GH∣) close to zero, is one of the ultimate goals in the catalytic field. Here, we report the formation of monolayer titanium selenide (TiSe2) with line defects. The low-temperature scanning tunneling microscopy/spectroscopy (STM/S) measurements revealed the structure and electronic states of the line defect. Density functional theory (DFT) calculation results confirmed that the line defects were induced by selenium vacancies and the STM simulation was in good agreement with the experimental results. Further, DFT calculations show that monolayer TiSe2 with line defects have good catalytic activity for hydrogen evolution reaction (HER). If the defects are decorated with single Pt atom, the HER catalytic activity will be enhanced dramatically (∣∆GH∣ = 0.006 eV), which is much better than Pt metal (∣∆GH∣ = 0.09 eV). Line defects in monolayer TiSe2/Au(111) provide a wonderful platform for the design of high-performance catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    Article  CAS  Google Scholar 

  2. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  3. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

    Article  CAS  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  5. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  6. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 2011, 23, 213001.

    Article  CAS  Google Scholar 

  7. Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

    Article  CAS  Google Scholar 

  8. Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92–97.

    Article  CAS  Google Scholar 

  9. Xu, J. P.; Liu, C. H.; Wang, M. X.; Ge, J. F.; Liu, Z. L.; Yang, X. J.; Chen, Y.; Liu, Y.; Xu, Z. A.; Gao, C. L. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 2014, 112, 217001.

    Article  Google Scholar 

  10. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

    Article  CAS  Google Scholar 

  11. Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

    Article  CAS  Google Scholar 

  12. Duan, R. H.; Deng, Y.; Yang, J. F.; Liu, Z. High-quality 2D TMD crystals synthesized by solid-state reaction in vacuum system and their applications. Chin. J. Vac. Sci. Technol. 2021, 41, 1–21.

    Google Scholar 

  13. Zhao, J. L.; Ma, D. T.; Wang, C.; Guo, Z. N.; Zhang, B.; Li, J. Q.; Nie, G. H.; Xie, N.; Zhang, H. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 2021, 14, 897–919.

    Article  CAS  Google Scholar 

  14. Lu, H. L.; Zhang, Y. Y.; Lin, X.; Gao, H. J. Novel two-dimensional transition metal chalcogenides created by epitaxial growth. Sci. China Phys. Mech. Astron. 2021, 64, 106801.

    Article  CAS  Google Scholar 

  15. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Article  Google Scholar 

  16. Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

    Article  CAS  Google Scholar 

  17. Bao, W.; Borys, N. J.; Ko, C.; Suh, J.; Fan, W.; Thron, A.; Zhang, Y. J.; Buyanin, A.; Zhang, J.; Cabrini, S. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 2015, 6, 7993.

    Article  CAS  Google Scholar 

  18. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  CAS  Google Scholar 

  19. Zhang, Z. H.; Zou, X. L.; Crespi, V. H.; Yakobson, B. I. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. Acs Nano 2013, 7, 10475–10481.

    Article  CAS  Google Scholar 

  20. Dai, M. J.; Zheng, W.; Zhang, X.; Wang, S. M.; Lin, J. H.; Li, K.; Hu, Y. X.; Sun, E. W.; Zhang, J.; Qiu, Y. F. et al. Enhanced piezoelectric effect derived from grain boundary in MoS2 Monolayers. Nano Lett. 2020, 20, 201–207.

    Article  CAS  Google Scholar 

  21. Zhu, J. Q.; Wang, Z. C.; Dai, H. J.; Wang, Q. Q.; Yang, R.; Yu, H.; Liao, M. Z.; Zhang, J.; Chen, W.; Wei, Z. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.

    Article  Google Scholar 

  22. Pu, M. J.; Wang, D.; Zhang, Z. H.; Guo, Y. F.; Guo, W. L. Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3584-8.

  23. Chang, Y. S.; Chen, C. Y.; Ho, C. J.; Cheng, C. M.; Chen, H. R.; Fu, T. Y.; Huang, Y. T.; Ke, S. W.; Du, H. Y.; Lee, K. Y. et al. Surface electron accumulation and enhanced hydrogen evolution reaction in MoSe2 basal planes. Nano Energy 2021, 84, 105922.

    Article  CAS  Google Scholar 

  24. Yuan, S. G.; Pang, S. Y.; Hao, J. H. 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Appl. Phys. Rev. 2020, 7, 021304.

    Article  CAS  Google Scholar 

  25. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  CAS  Google Scholar 

  26. Gordon, R. B.; Bertram, M.; Graedel, T. E. Metal stocks and sustainability. Proc. Natl. Acad. Sci. USA 2006, 103, 1209–1214.

    Article  CAS  Google Scholar 

  27. Fu, J. N.; Ali, R.; Mu, C. H.; Liu, Y. F.; Mahmood, N.; Lau, W. M.; Jian, X. Large-scale preparation of 2D VSe2 through a defect-engineering approach for efficient hydrogen evolution reaction. Chem. Eng. J. 2021, 411, 128494.

    Article  CAS  Google Scholar 

  28. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  CAS  Google Scholar 

  29. Shu, H. B.; Zhou, D.; Li, F.; Cao, D.; Chen, X. S. Defect engineering in MoSe2 for the hydrogen evolution reaction: From point defects to edges. ACS Appl. Mater. Interfaces 2017, 9, 42688–42698.

    Article  CAS  Google Scholar 

  30. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  32. Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  33. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  34. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  35. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48, 4978.

    Article  CAS  Google Scholar 

  36. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  37. Palotás, K.; Mándi, G.; Szunyogh, L. Enhancement of the spin transfer torque efficiency in magnetic STM junctions. Phys. Rev. B 2016, 94, 064434.

    Article  Google Scholar 

  38. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

    Article  Google Scholar 

  39. Peng, J. P.; Guan, J. Q.; Zhang, H. M.; Song, C. L.; Wang, L. L.; He, K.; Xue, Q. K.; Ma, X. C. Molecular beam epitaxy growth and scanning tunneling microscopy study of TiSe2 ultrathin films. Phys. Rev. B 2015, 91, 121113.

    Article  Google Scholar 

  40. Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of CuxTiSe2 in a wide range (0.04 < x < 0.8) of copper concentration. J. Chem. Phys. 2016, 144, 074702.

    Article  CAS  Google Scholar 

  41. Cheng, F.; Hu, Z. X.; Xu, H.; Shao, Y.; Su, J.; Chen, Z.; Ji, W.; Loh, K. P. Interface engineering of Au(111) for the growth of 1T’-MoSe2. Acs Nano 2019, 13, 2316–2323.

    CAS  Google Scholar 

  42. Wang, D. F.; Yu, H.; Tao, L.; Xiao, W. D.; Fan, P.; Zhang, T. T.; Liao, M. Z.; Guo, W.; Shi, D. X.; Du, S. X. et al. Bandgap broadening at grain boundaries in single-layer MoS2. Nano Res. 2018, 11, 6102–6109.

    Article  CAS  Google Scholar 

  43. Liu, Z. L.; Lei, B.; Zhu, Z. L.; Tao, L.; Qi, J.; Bao, D. L.; Wu, X.; Huang, L.; Zhang, Y. Y.; Lin, X. et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 2019, 19, 4897–4903.

    Article  CAS  Google Scholar 

  44. Elibol, K.; Susi, T.; Argentero, G.; Monazam, M. R. A.; Pennycook, T. J.; Meyer, J. C.; Kotakoski, J. Atomic structure of intrinsic and electron-irradiation-induced defects in MoTe2. Chem. Mater. 2018, 30, 1230–1238.

    Article  CAS  Google Scholar 

  45. Lu, J. C.; Bao, D. L.; Qian, K.; Zhang, S.; Chen, H.; Lin, X.; Du, S. X.; Gao, H. J. Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on Au(111). Acs Nano 2017, 11, 1689–1695.

    Article  CAS  Google Scholar 

  46. Li, S.; Lee, J. K.; Zhou, S.; Pasta, M.; Warner, J. H. Synthesis of surface grown Pt nanoparticles on edge-enriched MoS2 porous thin films for enhancing electrochemical performance. Chem. Mater. 2019, 31, 387–397.

    Article  Google Scholar 

  47. Wang, C. L.; Jin, M. G.; Liu, D. M.; Liang, F.; Luo, C.; Li, P. L.; Cai, C. H.; Bi, H. C.; Wu, X.; Di, Z. F. VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction. J. Phys. D:Appl. Phys. 2021, 54, 214006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Guangchao Chen for his help. This work was supported by the National Key R&D Program of China (Nos. 2019YFA0308500 and 2018YFA0305800), the National Natural Science Foundation of China (Nos. 61925111 and 61888102), Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB28000000 and XDB30000000), the Fundamental Research Funds for the Central Universities, and CAS Key Laboratory of Vacuum Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruizi Zhang, Hongliang Lu or Xiao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Yi, J., Qi, J. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 15, 4687–4692 (2022). https://doi.org/10.1007/s12274-021-4002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4002-y

Keywords

Navigation