Skip to main content
Log in

Abnormal thermal conductivity enhancement in covalently bonded bilayer borophene allotrope

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Thermal conductivity of two-dimensional (2D) materials has gained prominence due to the attractive applications in thermal management and thermoelectric devices. In this work, we present a new member of bilayer 2D boron allotropes, denoted as bilayer β12 borophene, and study the thermal transport properties by solving phonon Boltzmann transport equation based on density functional theory. Based on quantitative chemical bonding analysis, we identify large degrees of covalent bonding of the interlayer interaction. In comparison to its monolayer counterpart, the bilayer exhibits much higher in-plane thermal conductivity despite the lower phonon group velocity and buckling structure, inferring a new physical mechanism. The thermal conductivity (κ) of bilayer β12 borophene at 300 K is 140.5 (86.3) W·m−1·K−1 along armchair (zigzag) direction, and κarmchair is about 52.7% higher than that of monolayer β12 borophene. The abnormal enhancement is attributed to the suppressed phonon scattering possibility and elongation of phonon lifetime. More interesting, after forming bilayer β12 borophene through interlayer covalent bonding, the dominated phonon branch to thermal conductivity changes to transverse acoustic phonons from out-of-plane flexural acoustic (ZA) phonons in the monolayer borophene. Our study elucidates the rich thermal transport characteristics in bilayer covalently bonded 2D materials, and injects fresh insights into the phonon engineering of 2D borophene relevant for emergent thermal management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett 2008, 8, 902–907.

    Article  CAS  Google Scholar 

  2. Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau C. N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett 2008, 92, 151911.

    Article  Google Scholar 

  3. Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater 2012, 11, 203–207.

    Article  CAS  Google Scholar 

  4. Nika, D. L.; Balandin, A. A. Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys 2017, 80, 036502.

    Article  Google Scholar 

  5. Balandin, A. A. Phononics of graphene and related materials. ACS Nano 2020, 14, 5170–5178.

    Article  CAS  Google Scholar 

  6. Raeisi, M.; Mortazavi, B.; Podryabinkin, E. V.; Shojaei, F.; Zhuang, X. Y.; Shapeev, A. V. High thermal conductivity in semiconducting Janus and non-Janus diamanes. Carbon 2020, 167, 51–61.

    Article  CAS  Google Scholar 

  7. Lindsay, L.; Broido, D. A.; Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 2011, 83, 235428.

    Article  Google Scholar 

  8. D’Souza, R.; Mukherjee, S. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene. Phys. Rev. B 2017, 95, 085435.

    Article  Google Scholar 

  9. Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater 2010, 9, 555–558.

    Article  CAS  Google Scholar 

  10. Zhou, H. Q.; Zhu, J. X.; Liu, Z.; Yan, Z.; Fan, X. J.; Lin, J.; Wang, G.; Yan, Q. Y.; Yu, T.; Ajayan, P. M. et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res 2014, 7, 1232–1240.

    Article  CAS  Google Scholar 

  11. Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett 2013, 13, 550–554.

    Article  CAS  Google Scholar 

  12. Lindsay, L.; Broido; D. A. Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes. Phys. Rev. B 2012, 85, 035436.

    Article  Google Scholar 

  13. Lindsay, L.; Broido, D. A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B 2011, 84, 155421.

    Article  Google Scholar 

  14. Jang, H.; Wood, J. D.; Ryder, C. R.; Hersam, M. C.; Cahill, D. G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater 2015, 27, 8017–8022.

    Article  CAS  Google Scholar 

  15. Qiu, B.; Ruan, X. L. Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study. Appl. Phys. Lett 2010, 97, 183107.

    Article  Google Scholar 

  16. Jo, I.; Pettes, M. T.; Ou, E.; Wu, W.; Shi, L. Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett 2014, 104, 201902.

    Article  Google Scholar 

  17. Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

    Article  CAS  Google Scholar 

  18. Wang, X. N.; Tabarraei, A. Phonon thermal conductivity of monolayer MoS2. Appl. Phy. Lett 2016, 108, 191905.

    Article  Google Scholar 

  19. Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

    Article  CAS  Google Scholar 

  20. Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res 2015, 8, 1210–1221.

    Article  CAS  Google Scholar 

  21. Chen, W. H.; Yan, L.; Li, Y.; Liu, J. W.; Wu, D.; Chen, W.; Yu, G. T.; Zhou, L. J.; Li, Z. R. Honeycomb borophene fragment stabilized in polyanionic sandwich lithium salt: A new type of two-dimensional material with superconductivity. J. Phys. Chem. C 2020, 124, 5870–5879.

    Article  CAS  Google Scholar 

  22. Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett 2022, 12, 2441–2445.

    Article  Google Scholar 

  23. Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett 2014, 112, 085502.

    Article  Google Scholar 

  24. Huang, Y. F.; Shirodkar, S. N.; Yakobson, B. I. Two-dimensional boron polymorphs for visible range plasmonics: A first-principles exploration. J. Am. Chem. Soc 2017, 139, 17181–17185.

    Article  CAS  Google Scholar 

  25. Tang, X. Q.; Chen, H.; Ding, Y. H. Mechanical properties of double-layered borophene with Li-storage. Mater. Res. Express 2018, 6, 035010.

    Article  Google Scholar 

  26. Haldar, A.; Cortes, C. L.; Darancet, P.; Sharifzadeh, S. Microscopic theory of plasmons in substrate-supported borophene. Nano Lett 2020, 20, 2986–2992.

    Article  CAS  Google Scholar 

  27. Zhou, H. B.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Superior lattice thermal conductance of single-layer borophene. npj 2D Mater. Appl 2017, 1, 14.

    Article  Google Scholar 

  28. Li, D. F.; He, J.; Ding, G. Q.; Tang, Q. Q.; Ying, Y.; He, J. J.; Zhong, C. Y.; Liu, Y.; Feng, C. B.; Sun, Q. L. et al. Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission. Adv. Funct. Mater 2018, 28, 1801685.

    Article  Google Scholar 

  29. He, J.; Li, D. F.; Ying, Y.; Feng, C. B.; He, J. J.; Zhong, C. Y.; Zhou, H. B.; Zhou, P.; Zhang, G. Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. npj Comput. Mater 2019, 5, 47.

    Article  Google Scholar 

  30. Yin, Y.; Li, D. F.; Hu, Y. X.; Ding, G. Q.; Zhou, H. B.; Zhang, G. Phonon stability and phonon transport of graphene-like borophene. Nanotechnology 2020, 31, 315709.

    Article  CAS  Google Scholar 

  31. Nakhaee, M.; Ketabi, S. A.; Peeters, F. M. Dirac nodal line in bilayer borophene: Tight-binding model and low-energy effective Hamiltonian. Phys. Rev. B 2018, 98, 115413.

    Article  CAS  Google Scholar 

  32. Zhong, H. X.; Huang, K. X.; Yu, G. D.; Yuan, S. J. Electronic and mechanical properties of few-layer borophene. Phys. Rev. B 2018, 98, 054104.

    Article  CAS  Google Scholar 

  33. Li, D. F.; Tang, Q. Q.; He, J.; Li, B. L.; Ding, G. Q.; Feng, C. B.; Zhou, H. B.; Zhang, G. From two- to three-dimensional van der Waals layered structures of boron Crystals: An ab initio study. ACS Omega 2019, 4, 8015–8021.

    Article  CAS  Google Scholar 

  34. Liang, T.; Zhang, P.; Yuan, P.; Zhai, S. P.; Yang, D. G. A molecular dynamics study on the thermal conductivities of single- and multilayer two-dimensional borophene. Nano Futures 2019, 3, 015001.

    Article  CAS  Google Scholar 

  35. Hu, Y. X.; Yin, Y.; Li, S. C.; Zhou, H. B.; Li, D. F.; Zhang, G. Threefold enhancement of in-plane thermal conductivity of borophene through metallic atom intercalation. Nano Lett 2020, 20, 7619–7626.

    Article  CAS  Google Scholar 

  36. Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Article  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  38. Huang, B.; Liu, M.; Su, N. H.; Wu, J.; Duan, W. H.; Gu, B. L.; Liu, F. Quantum manifestations of graphene edge stress and edge instability: A first-principles study. Phys. Rev. Lett 2009, 102, 166404.

    Article  Google Scholar 

  39. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scripta Mater 2015, 108, 1–5.

    Article  CAS  Google Scholar 

  40. Li, W.; Carrete, J.; Katcho, N. A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun 2014, 185, 1747–1758.

    Article  CAS  Google Scholar 

  41. Chernatynskiy, A.; Phillpot, S. R. Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations. Phys. Rev. B 2010, 82, 134301.

    Article  Google Scholar 

  42. Ward, A.; Broido, D. A.; Stewart, D. A.; Deinzer, G. ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 2009, 80, 125203.

    Article  Google Scholar 

  43. Lindsay, L.; Broido, D. A. Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 2008, 20, 165209.

    Article  Google Scholar 

  44. Li, W.; Mingo, N. Thermal conductivity of fully filled skutterudites: Role of the filler. Phys. Rev. B 2014, 89, 184304.

    Article  Google Scholar 

  45. Okubo, K.; Tamura, S. I. Two-phonon density of states and anharmonic decay of large-wave-vector LA phonons. Phys. Rev. B 1983, 28, 4847–4850.

    Article  CAS  Google Scholar 

  46. Gao, M.; Li, Q. Z.; Yan, X. W.; Wang, J. Prediction of phononmediated superconductivity in borophene. Phys. Rev. B 2017, 95, 024505.

    Article  Google Scholar 

  47. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    Article  CAS  Google Scholar 

  48. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem 2016, 8, 563–568.

    Article  CAS  Google Scholar 

  49. Gao, N.; Wu, X.; Jiang, X.; Bai, Y. Z.; Zhao, J. J. Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 2018, 7, 48–54.

    Article  CAS  Google Scholar 

  50. Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686.

    Article  CAS  Google Scholar 

  51. Peng, B.; Zhang, H.; Shao, H. Z.; Ning, Z. Y.; Xu, Y. F.; Ni, G.; Lu, H. L.; Zhang, D. W.; Zhu, H. Y. Stability and strength of atomically thin borophene from first principles calculations. Mater. Res. Lett 2017, 5, 399–407.

    Article  CAS  Google Scholar 

  52. Born, M.; Huang, K.; Lax, M. Dynamical theory of crystal lattices. Am. J. Phys 1955, 23, 474.

    Article  Google Scholar 

  53. Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115.

    Article  Google Scholar 

  54. Blonsky, M. N.; Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015, 9, 9885–9891.

    Article  CAS  Google Scholar 

  55. Zhong, C. Y.; Wu, W. K.; He, J. J.; Ding, G. Q.; Liu, Y.; Li, D. F.; Yang, S. A.; Zhang, G. Two-dimensional honeycomb borophene oxide: Strong anisotropy and nodal loop transformation. Nanoscale 2019, 11, 2468–2475.

    Article  CAS  Google Scholar 

  56. Kong, B. D.; Paul, S.; Nardelli, M. B.; Kim, K. W. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys. Rev. B 2009, 80, 033406.

    Article  Google Scholar 

  57. He, J.; Ouyang, Y. L.; Yu, C. Q.; Jiang, P. F.; Ren, W. J.; Chen, J. Lattice thermal conductivity of β12 and χ3 borophene. Chin. Phys. B 2020, 29, 126503.

    Article  CAS  Google Scholar 

  58. Lindsay, L.; Broido, D. A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 2010, 82, 115427.

    Article  Google Scholar 

  59. Gu, X. K.; Wei, Y. J.; Yin, X. B.; Li, B. W.; Yang, R. G. Colloquium: Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys 2018, 90, 041002.

    Article  CAS  Google Scholar 

  60. Feng, T.; Ruan, X. L. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 2018, 97, 045202.

    Article  CAS  Google Scholar 

  61. Han, Z. R.; Yang, X. L.; Li, W.; Feng, T. L.; Ruan, X. L. FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun 2022, 270, 108179.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding supporting from the National Natural Science Foundation of China (No. 11804040) and the Scientific and Technological Research of Chongqing Municipal Education Commission (No. KJZD-K202100602), G. Z. is supported in part by RIE2020 Advanced Manufacturing and Engineering Programmatic (No. A1898b0043).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Hu, Y., Li, S. et al. Abnormal thermal conductivity enhancement in covalently bonded bilayer borophene allotrope. Nano Res. 15, 3818–3824 (2022). https://doi.org/10.1007/s12274-021-3921-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3921-y

Navigation