Skip to main content
Log in

Near room-temperature ferromagnetism in air-stable two-dimensional Cr1−xTe grown by chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Identifying air-stable two-dimensional (2D) ferromagnetism with high Curie temperature (Tc) is highly desirable for its potential applications in next-generation spintronics. However, most of the work reported so far mainly focuses on promoting one specific key factor of 2D ferromagnetism (Tc or air stability), rather than comprehensive promotion of both of them. Herein, ultrathin Cr1−xTe crystals grown by chemical vapor deposition (CVD) show thickness-dependent Tc up to 285 K. The out-of-plane ferromagnetic order is well preserved down to atomically thin limit (2.0 nm), as evidenced by anomalous Hall effect observed in non-encapsulated samples. Besides, the CVD-grown Cr1−xTe nanosheets present excellent ambient stability, with no apparent change in surface roughness or electrical transport properties after exposure to air for months. Our work provides an alternative platform for investigation of intrinsic 2D ferromagnetism and development of innovative spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

    Article  CAS  Google Scholar 

  2. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

    Article  CAS  Google Scholar 

  3. Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

    Article  CAS  Google Scholar 

  4. Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    Article  CAS  Google Scholar 

  5. Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

    Article  CAS  Google Scholar 

  6. Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

    Article  CAS  Google Scholar 

  7. Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

    Article  CAS  Google Scholar 

  8. Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Scinnee 2018, 360, 1218–1222.

    CAS  Google Scholar 

  9. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  10. Wang, X.; Tang, J.; Xia, X. X.; He, C. L.; Zhang, J. W.; Liu, Y. Z.; Wan, C. H.; Fang, C.; Guo, C. Y.; Yang, W. L. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.

    Article  CAS  Google Scholar 

  11. Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

    Article  CAS  Google Scholar 

  12. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  CAS  Google Scholar 

  13. Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoglu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

    Article  Google Scholar 

  14. Su, J. W.; Wang, M. S.; Liu, G. H.; Li, H. Q.; Han, J. B.; Zhai, T. Y. Air-stable 2D intrinsic ferromagnetic Ta3FeS6 with four months durability. Adv. Sci. 2020, 7, 2001722.

    Article  CAS  Google Scholar 

  15. Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, 1900056.

    Article  Google Scholar 

  16. Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

    Article  CAS  Google Scholar 

  17. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    Article  CAS  Google Scholar 

  18. Meng, L. J.; Zhou, Z.; Xu, M. Q.; Yang, S. Q.; Si, K. P.; Liu, L. X.; Wang, X. G.; Jiang, H. N.; Li, B. X.; Qin, P. X. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809.

    Article  CAS  Google Scholar 

  19. Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

    Article  CAS  Google Scholar 

  20. May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

    Article  CAS  Google Scholar 

  21. Freitas, D. C.; Weht, R.; Sulpice, A.; Remenyi, G.; Strobel, P.; Gay, F.; Marcus, J.; Núñez-Regueiro, M. Ferromagnetism in layered metastable 1T-CrTe2. J. Phys.: Condens. Matter 2015, 27, 176002.

    Google Scholar 

  22. Li, H. X.; Wang, L. J.; Chen, J. S.; Yu, T.; Zhou, L.; Qiu, Y.; He, H. T.; Ye, F.; Sou, I. K.; Wang, G. Molecular beam epitaxy grown Cr2Te3 thin films with tunable Curie temperatures for spintronic devices. ACS Appl. Nano Mater. 2019, 2, 6809–6817.

    Article  CAS  Google Scholar 

  23. Purbawati, A.; Coraux, J.; Vogel, J.; Hadj-Azzem, A.; Wu, N.; Bendiab, N.; Jegouso, D.; Renard, J.; Marty, L.; Bouchiat, V. et al. In-plane magnetic domains and Neel-like domain walls in thin flakes of the room temperature CrTe2 Van der Waals ferromagnet. ACS Appl. Mater. Interfaces 2020, 12, 30702–30710.

    Article  CAS  Google Scholar 

  24. Zhang, W.; Wong, P. K. J.; Zhu, R.; Wee, A. T. S. Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479–495.

    Article  CAS  Google Scholar 

  25. Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    Article  CAS  Google Scholar 

  26. Yang, H.; Wang, F.; Zhang, H. S.; Guo, L. H.; Hu, L. Y.; Wang, L. F.; Xue, D. J.; Xu, X. H. Solution synthesis of layered van der Waals (vdW) ferromagnetic CrGeTe3 nanosheets from a non-vdW Cr2Te3 template. J. Am. Chem. Soc. 2020, 142, 4438–4444.

    Article  CAS  Google Scholar 

  27. Chu, J. W.; Zhang, Y.; Wen, Y.; Qiao, R. X.; Wu, C. C.; He, P.; Yin, L.; Cheng, R. Q.; Wang, F.; Wang, Z. X. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154–2161.

    Article  CAS  Google Scholar 

  28. Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

    Article  Google Scholar 

  29. Polesya, S.; Mankovsky, S.; Benea, D.; Ebert, H.; Bensch, W. Finite-temperature magnetism of CrTe and CrSe. J. Phys.:Condens. Matter 2010, 22, 156002.

    CAS  Google Scholar 

  30. Gao, P.; Liu, H. J.; Huang, Y. L.; Chu, Y. H.; Ishikawa, R.; Feng, B.; Jiang, Y.; Shibata, N.; Wang, E. G.; Ikuhara, Y. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun. 2016, 7, 11318.

    Article  CAS  Google Scholar 

  31. Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.

    Article  Google Scholar 

  32. Zhou, L.; Chen, J. S.; Du, Z. Z.; He, X. S.; Ye, B. C.; Guo, G. P.; Lu, H. Z.; Wang, G.; He, H. T. Magnetotransport properties of Cr1−δTe thin films with strong perpendicular magnetic anisotropy. AIP Adv. 2017, 7, 125116.

    Article  Google Scholar 

  33. Yue, D.; Jin, X. F. Towards a better understanding of the anomalous hall effect. J. Phys. Soc. Jpn. 2017, 86, 011006.

    Article  Google Scholar 

  34. Keskin, V.; Aktas, B.; Schmalhorst, J.; Reiss, G.; Zhang, H.; Weischenberg, J.; Mokrousov, Y. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 2013, 102, 022416.

    Article  Google Scholar 

  35. Zhao, D. P.; Zhang, L. G.; Malik, I. A.; Liao, M. H.; Cui, W. Q.; Cai, X. Q.; Zheng, C.; Li, L. X.; Hu, X. P.; Zhang, D. et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res. 2018, 11, 3116–3121.

    Article  CAS  Google Scholar 

  36. Roy, A.; Guchhait, S.; Dey, R.; Pramanik, T.; Hsieh, C. C.; Rai, A.; Banerjee, S. K. Perpendicular magnetic anisotropy and spin glasslike behavior in molecular beam epitaxy grown chromium telluride thin films. ACS Nano 2015, 9, 3772–3779.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. X. W. acknowledges financial support from the National Natural Science Foundation of China (No. 92064005) and Beijing National Laboratory for Molecular Sciences (No. BNLMS201914), and thanks S. S. D. in Tianjin Key Laboratory of Molecular Optoelectronic Sciences for her instrumental assistance on PPMS (Dynacool-9T). H. T. Y. acknowledges the support from the National Natural Science Foundation of China (Nos. 91750101, 21733001, 52072168, and 51861145201), the National Key Basic Research Program of China (No. 2018YFA0306200), the Fundamental Research Funds for the Central Universities (Nos. 021314380078, 021314380104, and 021314380147) and Jiangsu Key Laboratory of Artificial Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Yuan, Jinxiong Wu or Feng Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Tang, M., Huang, J. et al. Near room-temperature ferromagnetism in air-stable two-dimensional Cr1−xTe grown by chemical vapor deposition. Nano Res. 15, 3763–3769 (2022). https://doi.org/10.1007/s12274-021-3909-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3909-7

Keywords

Navigation