Skip to main content
Log in

Strain-sensitive ferromagnetic two-dimensional Cr2Te3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Searching for room temperature magnetic two-dimensional (2D) materials is a charming goal, but the number of satisfied materials is tiny. Strain can introduce considerable deformation into the lattice structure of 2D materials, and thus significantly modulate their intrinsic properties. In this work, we demonstrated a remarkable strain-modulated magnetic properties in the chemical vapor deposited Cr2Te3 nanoflakes grown on mica substrate. We found the Curie temperature of Cr2Te3 nanoflakes can be positively and negatively modulated under tensile and compressive strain respectively, with a maximum varied value of ∼ 40 and −90 K, dependent on the thickness of samples. Besides, the coercive field of Cr2Te3 nanoflakes also showed a significant decrease under the applied strain, suggesting the decrease of exchange interaction or the change of the magnetization direction. This work suggests a promise to employ interfacial strain to accelerate the practical application of room temperature 2D magnetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  2. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  CAS  Google Scholar 

  3. Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

    Article  CAS  Google Scholar 

  4. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    Article  CAS  Google Scholar 

  5. Wang, R. Y.; Zhou, F. Y.; Lv, L.; Zhou, S. S.; Yu, Y. W.; Zhuge, F.; Li, H. Q.; Gan, L.; Zhai, T Y. Modulation of the anisotropic electronic properties in ReS2 via ferroelectric film. CCS Chem. 2019, 1, 268–277.

    Article  CAS  Google Scholar 

  6. Guan, Z. Y.; Ni, S. Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic janus VSeTe monolayer. ACS Appl. Mater. Interfaces 2020, 12, 53067–53075.

    Article  CAS  Google Scholar 

  7. Kimel, A. V.; Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 2019, 4, 189–200.

    Article  Google Scholar 

  8. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: a spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

    Article  CAS  Google Scholar 

  9. Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    Article  CAS  Google Scholar 

  10. Deka, A.; Rana, B.; Anami, R.; Miura, K.; Takahashi, H.; Otani, Y.; Fukuma, Y. Electric-field control of interfacial in-plane magnetic anisotropy in CoFeB/MgO junctions. Phys. Rev. B 2020, 101, 174405.

    Article  CAS  Google Scholar 

  11. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    Article  CAS  Google Scholar 

  12. Zhang, L. M.; Huang, X. Y.; Dai, H. W.; Wang, M. S.; Cheng, H.; Tong, L.; Li, Z.; Han, X. T.; Wang, X.; Ye, L. et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der waals heterostructures. Adv. Mater. 2020, 32, 2002032.

    Article  CAS  Google Scholar 

  13. Lotgering, F. K.; Gorter, E. W. Solid solutions between ferromagnetic and antiferromagnetic compounds with NiAs structure. J. Phys. Chem. Solids 1957, 3, 238–249.

    Article  CAS  Google Scholar 

  14. Kim, W. J.; Oh, T.; Song, J.; Ko, E. K.; Li, Y. Y.; Mun, J.; Kim, B.; Son, J.; Yang, Z.; Kohama, Y. et al. Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films. Sin. Adv. 2020, 6, eabb1539.

    CAS  Google Scholar 

  15. Zhou, S. S.; Wang, R. Y.; Han, J. B.; Wang, D. L.; Li, H. Q.; Gan, L.; Zhai, T Y. Ultrathin Non-van der Waals magnetic Rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater. 2019, 29, 1805880.

    Article  Google Scholar 

  16. Dai, Z. H.; Liu, L. Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417.

    Article  CAS  Google Scholar 

  17. Peng, Z. W.; Chen, X. L.; Fan, Y. L.; Srolovitz, D. J.; Lei, D. Y. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 2020, 9, 190.

    Article  CAS  Google Scholar 

  18. Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

    Article  CAS  Google Scholar 

  19. Wang, Y.; Wang, C.; Liang, S. J.; Ma, Z. C.; Xu, K.; Liu, X. W.; Zhang, L. L.; Admasu, A. S.; Cheong, S. W.; Wang, L. Z. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533.

    Article  CAS  Google Scholar 

  20. Liu, L. X.; Zhai, T. Y. Wafer-scale vertical van der Waals heterostructures. InfoMat 2020, 3, 3–21.

    Article  Google Scholar 

  21. Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.

    Article  CAS  Google Scholar 

  22. Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

    Article  CAS  Google Scholar 

  23. Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron. Eng. 2020, 219, 111152.

    Article  CAS  Google Scholar 

  24. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

    Article  Google Scholar 

  25. Wang, M. S.; Kang, L. X.; Su, J. W.; Zhang, L. M.; Dai, H. W.; Cheng, H.; Han, X. T.; Zhai, T. Y.; Liu, Z.; Han, J. B. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 2020, 12, 16427–16432.

    Article  CAS  Google Scholar 

  26. Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.

    Article  Google Scholar 

  27. Sheng, P.; Wang, B. M.; Li, R. W. Flexible magnetic thin films and devices. J. Semicond. 2018, 39, 011006.

    Article  Google Scholar 

  28. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  30. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  31. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192

    Article  Google Scholar 

  32. Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

    Article  CAS  Google Scholar 

  33. Pierce, M. S.; Buechler, C. R.; Sorensen, L. B.; Turner, J. J.; Kevan, S. D.; Jagla, E. A.; Deutsch, J. M.; Mai, T.; Narayan, O.; Davies, J. E. et al. Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 2005, 94, 017202.

    Article  CAS  Google Scholar 

  34. Jagla, E. A. Hysteresis loops of magnetic thin films with perpendicular anisotropy. Phys. Rev. B 2005, 72, 094406.

    Article  Google Scholar 

  35. Wang, G. The application of magnetoelasticity in stress monitoring. Ph.D. Dissertation, University of Illinois at Chicago, Illinois, 2006.

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the technical support from Analytical and Testing Center in Huazhong University of Science and Technology. This work was supported by National Nature Science Foundation of China (Nos. 51872100, 21825103 and 51727809), Hubei Provincial Natural Science Foundation of China (No. 2019CFA002), the Fundamental Research Funds for the Central University (Nos. 2019kfyRCPY059, 2019kfyXMBZ018 and 2020kfyXJJS050), and Foundation of Shenzhen Science and Technology Innovation Committee (No. JCYJ20180504170444967).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Han, Lin Gan or Tianyou Zhai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Wang, M., Liu, T. et al. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res. 15, 1254–1259 (2022). https://doi.org/10.1007/s12274-021-3633-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3633-3

Keywords

Navigation