Skip to main content
Log in

Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sulfide compounds provide a type of promising alternative for oxygen evolution reaction (OER) electrocatalysts due to their diversity, intrinsic activities, low-price and earth-abundance. However, the unsmooth mass transport channel, the collapse of the structure and insufficient intrinsic activities limits their potential for OER performance. In respond, the dense Fe-doped Co9S8 nanoparticles encapsulated by S, N co-incorporated carbon nanosheets (Fe-Co9S8@SNC) was proposed and synthesized via fast thermal treatment from ultrathin metal-organic frameworks (MOFs) nanosheets. In designed catalysts, the nanosheet configuration connected by nanoparticles retained rich access for permeation of electrolyte and precipitation of O2 bubbles during OER process. Meanwhile, the outer carbon layer of Co9S8 provided additional catalytic activity while acting as armor to keep the structure stability. At the atomic scale, the doped Fe regulated the local charge density and the d-band center for facilitating desorption of oxygen intermediates. Benefiting from this multi-scale regulation strategy, the Fe-Co9S8@SNC displays an ultralow overpotential of 273 mV at 10 mA·cm−2 and small Tafel slope of 55.8 mV·dec−1, which is even close to the benchmark RuO2 catalyst. This concept could provide valuable insights into the design of other catalysts for OER and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  2. Liu, Y. W.; Xiao, C.; Huang, P. C.; Cheng, M.; Xie, Y. Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 2018, 4, 1263–1283.

    Article  CAS  Google Scholar 

  3. Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2020, 14, 1533–1540.

    Article  Google Scholar 

  4. Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Seawater electrolyte-based metal-air batteries: From strategies to applications. Energy Environ. Sci. 2020, 13, 3253–3268.

    Article  CAS  Google Scholar 

  5. Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

    Article  CAS  Google Scholar 

  6. Butcha, S.; Assavapanumat, S.; Ittisanronnachai, S.; Lapeyre, V.; Wattanakit, C.; Kuhn, A. Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat. Commun. 2021, 12, 1314.

    Article  CAS  Google Scholar 

  7. Fukushima, T.; Higashi, M.; Kitano, S.; Sugiyama, T.; Yamauchi, M. Multiscale design for high-performance glycolic acid electrosynthesis cell: Preparation of nanoscale-IrO2-applied Ti anode and optimization of cell assembling. Catal. Today 2020, 351, 12–20.

    Article  CAS  Google Scholar 

  8. Wang, W. B.; Wen, Q. L.; Liu, Y. W.; Zhai, T. Y. Research progress of surface and interface chemistry regulate two-dimensional materials for electrocatalytic biomass conversion. Acta Chim. Sin. 2020, 78, 1185–1199.

    Article  CAS  Google Scholar 

  9. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  10. Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941–2946.

    Article  CAS  Google Scholar 

  11. Zhou, Y.; Sun, S. N.; Wei, C.; Sun, Y. M.; Xi, P. X.; Feng, Z. X.; Xu, Z. J. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv. Mater. 2019, 31, 1902509.

    Article  CAS  Google Scholar 

  12. Zhang, S. C.; Wang, W. B.; Hu, F. L.; Mi, Y.; Wang, S. Z.; Liu, Y. W.; Ai, X. M.; Fang, J. K.; Li, H. Q.; Zhai, T. Y. 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1,000 mA·cm−2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020, 12, 140.

    Article  Google Scholar 

  13. Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

    Article  Google Scholar 

  14. Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

    Article  CAS  Google Scholar 

  15. Xue, H. Y.; Meng, A.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3359-2.

  16. Li, C. C.; Liu, Y. W.; Zhuo, Z. W.; Ju, H. X.; Li, D.; Guo, Y. P.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775.

    Article  Google Scholar 

  17. Zhang, X.; Liu, S. W.; Zang, Y. P.; Liu, R. R.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93–102.

    Article  CAS  Google Scholar 

  18. Wu, L. L.; Wang, Q. S.; Li, J.; Long, Y.; Liu, Y.; Song, S. Y.; Zhang, H. J. Co9S8nanoparticles-embedded N/S-codoped carbon nanofibers derived from metal-organic framework-wrapped CdS nanowires for efficient oxygen evolution reaction. Small 2018, 14, 1704035.

    Article  Google Scholar 

  19. Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712–4721.

    Article  CAS  Google Scholar 

  20. Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 2015, 27, 4752–4759.

    Article  CAS  Google Scholar 

  21. Wu, Z. S.; Huang, L.; Liu, H.; Li, M.; Wang, H. L. Surface oxidation of transition metal sulfide and phosphide nanomaterials. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3219-5.

  22. Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937–1938.

    Article  CAS  Google Scholar 

  23. Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

    Article  CAS  Google Scholar 

  24. Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635–1644.

    Article  CAS  Google Scholar 

  25. Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

    Article  Google Scholar 

  26. Tu, Y. C.; Ren, P. J.; Deng, D. H.; Bao, X. H. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy 2018, 52, 494–500.

    Article  CAS  Google Scholar 

  27. Wei, P. K.; Hao, Z. W.; Yang, Y.; Liu, M. Y.; Zhang, H. J.; Gao, M. R.; Yu, S. H. Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Res. 2020, 13, 3292–3298.

    Article  CAS  Google Scholar 

  28. Zhang, M.; Guan, J.; Tu, Y. C.; Chen, S. M.; Wang, Y.; Wang, S.; Yu, L.; Ma, C.; Deng, D. H.; Bao, X. H. Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst. Energy Environ. Sci. 2020, 13, 119–126.

    Article  Google Scholar 

  29. Yu, L.; Deng, D. H.; Bao, X. H. Chain mail for catalysts. Angew. Chem., Int. Ed. 2020, 59, 15294–15297.

    Article  CAS  Google Scholar 

  30. Wang, Z. P.; Lin, Z. P.; Deng, J.; Shen, S. J.; Meng, F. Q.; Zhang, J. T.; Zhang, Q. H.; Zhong, W. W.; Gu, L. Elevating the d-band center of six-coordinated octahedrons in Co9S8 through Fe-incorporated topochemical deintercalation. Adv. Energy Mater. 2020, 11, 2003023.

    Article  Google Scholar 

  31. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    Article  CAS  Google Scholar 

  32. Tong, M. Y.; Liu, S. W.; Zhang, X.; Wu, T. X.; Zhang, H. M.; Wang, G. Z.; Zhang, Y. X.; Zhu, X. G.; Zhao, H. J. Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S,N-containing Co/Ni MOFs for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 9873–9881.

    Article  CAS  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  34. Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

    Article  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  36. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  37. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  38. Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; García de Arquer, F. P.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

    Article  CAS  Google Scholar 

  39. Jia, H. P.; Li, W.; Ju, Z. F.; Zhang, J. Synthesis, structure and magnetism of metal-organic framework materials with doubly pillared layers. Eur. J. Inorg. Chem. 2006, 2006, 4264–4270.

    Article  Google Scholar 

  40. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Wang, X. L.; Lu, X. H.; Xia, X. H.; Tu, J. P. Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 2018, 5, 1700772.

    Article  Google Scholar 

  41. Qiu, B. C.; Cai, L. J.; Wang, Y.; Guo, X. Y.; Ma, S. N.; Zhu, Y.; Tsang, Y. H.; Zheng, Z. J.; Zheng, R. K.; Chai, Y. Phosphorus incorporation into Co9S8 nanocages for highly efficient oxygen evolution catalysis. Small 2019, 15, 1904507.

    Article  CAS  Google Scholar 

  42. Chang, S. H.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells. ACS Nano 2013, 7, 9443–9451.

    Article  CAS  Google Scholar 

  43. Jia, N.; Liu, J.; Gao, Y. S.; Chen, P.; Chen, X. B.; An, Z. W.; Li, X. F.; Chen, Y. Graphene-encapsulated Co9S8 nanoparticles on N,S-codoped carbon nanotubes: An efficient bifunctional oxygen electrocatalyst. ChemSusChem 2019, 12, 3390–3400.

    Article  CAS  Google Scholar 

  44. Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.

    Article  CAS  Google Scholar 

  45. Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

    Article  CAS  Google Scholar 

  46. Huang, S. C.; Meng, Y. Y.; He, S. M.; Goswami, A.; Wu, Q. L.; Li, J. H.; Tong, S. F.; Asefa, T.; Wu, M. M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1606585.

    Article  Google Scholar 

  47. Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

    Article  CAS  Google Scholar 

  48. Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

    Article  CAS  Google Scholar 

  49. Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

    Article  CAS  Google Scholar 

  50. Dai, J. L.; Zhao, D. K.; Sun, W. M.; Zhu, X. J.; Ma, L. J.; Wu, Z. X.; Yang, C. H.; Cui, Z. M.; Li, L. G.; Chen, S. W. Cu(II) ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis. ACS Catal. 2019, 9, 10761–10772.

    Article  CAS  Google Scholar 

  51. Zheng, X. B.; Cui, P. X.; Qian, Y. M.; Zhao, G. Q.; Zheng, X. S.; Xu, X.; Cheng, Z. X.; Liu, Y. Y.; Dou, S. X.; Sun, W. P. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew. Chem., Int. Ed. 2020, 59, 14533–14540.

    Article  CAS  Google Scholar 

  52. Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Zinc substitution-induced subtle lattice distortion mediates the active center of cobalt diselenide electrocatalysts for enhanced oxygen evolution. Small 2020, 16, 1907001.

    Article  CAS  Google Scholar 

  53. Zhao, J. Y.; Wang, R.; Wang, S.; Lv, Y. R.; Xu, H.; Zang, S. Q. Metalorganic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 2019, 7, 7389–7395.

    Article  CAS  Google Scholar 

  54. Gui, Y. H.; Liu, X.; Dou, Y. H.; Zhang, L.; Al-Mamun, M.; Jiang, L. X.; Yin, H. J.; He, C. T.; Zhao, H. J. Manipulating the assembled structure of atomically thin CoSe2 nanomaterials for enhanced water oxidation catalysis. Nano Energy 2019, 57, 371–378.

    Article  CAS  Google Scholar 

  55. Fang, G. Z.; Wang, Q. C.; Zhou, J.; Lei, Y. P.; Chen, Z. X.; Wang, Z. Q.; Pan, A. Q.; Liang, S. Q. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635–5645.

    Article  CAS  Google Scholar 

  56. You, H.; Zhuo, Z. W.; Lu, X. F.; Liu, Y. W.; Guo, Y. B.; Wang, W. B.; Yang, H.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. 1T′-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019, 1, 396–406.

    Article  CAS  Google Scholar 

  57. Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M=Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

    Article  CAS  Google Scholar 

  58. Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

    Article  Google Scholar 

  59. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metalorganic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  CAS  Google Scholar 

  60. Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

    Article  Google Scholar 

  61. Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

    Article  CAS  Google Scholar 

  62. Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.

    Article  Google Scholar 

  63. Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. App. Catal. B Environ. 2020, 263, 118345.

    Article  CAS  Google Scholar 

  64. Hao, P.; Xin, Y.; Wang, Q.; Li, L. Y.; Zhao, Z. H.; Wen, H. G.; Xie, J. F.; Cui, G. W.; Tang, B. Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation. Chem. Commun. 2021, 57, 2029–2032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. J. Q. Zhao (Huazhong University of Science and Technology) for high resolution transmission electron microscope testing. This work was financially supported by the National Natural Science Foundation of China (Nos. 21805102 and 22071069) and the Foundation of Basic and Applied Basic Research of Guangdong Province (No. 2019B1515120087). We also acknowledge technical support from Analytical and Testing Center in Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwen Liu.

Electronic supplementary material

12274_2021_3568_MOESM1_ESM.pdf

Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yang, Y., Zhao, Y. et al. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 15, 872–880 (2022). https://doi.org/10.1007/s12274-021-3568-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3568-8

Keywords

Navigation