Skip to main content
Log in

Aza-BODIPY-based phototheranostic nanoagent for tissue oxygen auto-adaptive photodynamic/photothermal complementary therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tumor oxygen spatial heterogeneity is a critical challenge for the photodynamic inhibition of solid tumors. Development of an intelligent nanoagent to initiate optimal therapeutics according to the localized oxygen levels is an effective settlement. Herein, we report an activatable nanoagent (BDP-Oxide nanoparticles (NPs)) to enable the oxygen auto-adaptive photodynamic/photothermal complementary treatment. Upon the nanoagent accumulated in the tumor region, the low extracellular pH could trigger the disassociation of the nanoagent to release the phototheranostic agent, BDP-Oxide, which will subsequently afford the fluorescence imaging-guided photodynamic oxidation after it gets into the outer oxygen-rich tumors. Along with the penetration deepening in the solid tumor, furthermore, BDP-Oxide could be reduced into BDP by the cytochrome P450 (CYP450) enzymes activated in the low oxygen tension regions of inner hypoxic tumors, which will switch on the photothermal and photoacoustic effects. Overall, the BDP-Oxide NPs-enabled photodynamic/photothermal complementary therapy significantly suppressed the solid tumor growth (inhibition rate of 94.8%). This work proposes an intelligent platform to address the oxygen partial pressure for the optimization of cancer phototherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koens, R.; Tabata, Y.; Serrano, J.; Aratake, S.; Yoshino, D.; Kamm, R. D.; Funamoto, K. Microfluidic platform for three-dimensional cell culture under spatiotemporal heterogeneity of oxygen tension. APL Bioengin. 2020, 4, 016106.

    Article  CAS  Google Scholar 

  2. Axelson, H.; Fredlund, E.; Ovenberger, M.; Landberg, G.; Påhlman, S. Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell. Dev. Biol. 2005, 16, 554–563.

    Article  CAS  Google Scholar 

  3. Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182.

    Article  CAS  Google Scholar 

  4. Alizadeh, A. A.; Aranda, V.; Bardelli, A.; Blanpain, C.; Bock, C.; Borowski, C.; Caldas, C.; Califano, A.; Doherty, M.; Elsner, M. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 2015, 21, 846–853.

    Article  CAS  Google Scholar 

  5. Yang, H. O.; Zhang, H. Y.; Yang, Y. C.; Wang, X. Y.; Deng, T.; Liu, R.; Ning, T.; Bai, M.; Li, H. L.; Zhu, K. G. et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics 2020, 10, 8211–8226.

    Article  CAS  Google Scholar 

  6. Cao, X.; Rao Allu, S.; Jiang, S. D.; Jia, M. Y.; Gunn, J. R.; Yao, C. P.; LaRochelle, E. P.; Shell, J. R.; Bruza, P.; Gladstone, D. J. et al. Tissue pO2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat. Commun. 2020, 11, 573.

    Article  CAS  Google Scholar 

  7. Sharma, A.; Arambula, J. F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J. L.; Kim, J. S. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 2019, 48, 771–813.

    Article  CAS  Google Scholar 

  8. Xu, T.; Ma, Y. Y.; Yuan, Q. L.; Hu, H. X.; Hu, X. K.; Qian, Z. Y.; Rolle, J. K.; Gu, Y. Q.; Li, S. W. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 2020, 14, 3414–3425.

    Article  CAS  Google Scholar 

  9. Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

    Article  Google Scholar 

  10. Wang, M. F.; Hou, Z. Y.; Al Kheraif, A. A.; Xing, B. G.; Lin, J. Mini review of TiO2-based multifunctional nanocomposites for near-infrared light-responsive phototherapy. Adv. Healthc. Mater. 2018, 7, 1800351.

    Article  Google Scholar 

  11. Yu, W. Y.; Liu, T.; Zhang, M. K.; Wang, Z. X.; Ye, J. J.; Li, C. X.; Liu, W. L.; Li, R. Q.; Feng, J.; Zhang, X. Z. O2 Economizer for inhibiting cell respiration to combat the hypoxia obstacle in tumor treatments. ACS Nano 2019, 13, 1784–1794.

    CAS  Google Scholar 

  12. Xuan, W. J.; Xia, Y. H.; Li, T.; Wang, L. L.; Liu, Y. L.; Tan, W. H. Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and pH-independent cancer chemodynamic therapy. J. Am. Chem. Soc. 2020, 142, 937–944.

    Article  CAS  Google Scholar 

  13. Xu, S. T.; Zhu, X. Y.; Zhang, C.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Oxygen and Pt (II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat. Commun. 2018, 9, 2053.

    Article  Google Scholar 

  14. Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145–6153.

    Article  CAS  Google Scholar 

  15. Guo, Z. Q.; Zou, Y. L.; He, H.; Rao, J. M.; Ji, S. S.; Cui, X. N.; Ke, H. T.; Deng, Y. B.; Yang, H.; Chen, C. Y. et al. Bifunctional platinated nanoparticles for photoinduced tumor ablation. Adv. Mater. 2016, 28, 10155–10164.

    Article  CAS  Google Scholar 

  16. Ren, Y.; Wang, R. R.; Liu, Y.; Guo, H.; Zhou, X.; Yuan, X. B.; Liu, C. Y.; Tian, J. G.; Yin, H. F.; Wang, Y. S. et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014, 35, 2462–2470.

    Article  CAS  Google Scholar 

  17. Huang, H.; He, L. Z.; Zhou, W. H.; Qu, G. B.; Wang, J. H.; Yang, N.; Gao, J.; Chen, T. F.; Chu, P. K.; Yu, X. F. Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy. Biomaterials 2018, 171, 12–22.

    Article  CAS  Google Scholar 

  18. Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Weichselbaum, R.; Lin, W. B. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502–12510.

    Article  CAS  Google Scholar 

  19. Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541–2550.

    Article  CAS  Google Scholar 

  20. Guan, Q.; Zhou, L. L.; Li Y. A.; Wang, S. M.; Song C.; Dong Y. B. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 2019, 13, 13304–13316.

    Article  CAS  Google Scholar 

  21. Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070–5077.

    Article  CAS  Google Scholar 

  22. Sun, Y.; Zhang, Y. F.; Gao, Y.; Wang, P.; He, G.; Blum, N. T.; Lin, J.; Liu, Q. H.; Wang, X. B.; Huang, P. Six birds with one stone: Versatile nanoporphyrin for single-laser-triggered synergistic phototheranostics and robust immune activation. Adv. Mater. 2020, 32, 2004481.

    Article  CAS  Google Scholar 

  23. Sheng, Z. H.; Hu, D. H.; Zheng, M. B.; Zhao, P. F.; Liu, H. L.; Gao, D. Y.; Gong, P.; Gao, G. H.; Zhang, P. F.; Ma, Y. F. et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 2014, 8, 12310–12322.

    Article  CAS  Google Scholar 

  24. Li, H.; Wang, P.; Deng, Y. X.; Zeng, M. Y.; Tang, Y.; Zhu, W. H.; Cheng, Y. S. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials 2017, 139, 30–38.

    Article  CAS  Google Scholar 

  25. Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

    Article  Google Scholar 

  26. Guo, R. R.; Peng, H. B.; Tian, Y.; Shen, S.; Yang, W. L. Mitochondriatargeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 2016, 12, 4541–4552.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Luo, S. Y.; Wu, Y. S.; Tang, P.; Liu, J. J.; Liu, Z. Y.; Shen, S. H.; Ren, H. Z.; Wu, D. C. Highly penetrable and on-demand oxygen release with tumor activity composite nanosystem for photothermal/photodynamic synergetic therapy. ACS Nano 2020, 14, 17046–17062.

    Article  CAS  Google Scholar 

  28. Wang, Q.; Dai, Y. N.; Xu, J. Z.; Cai, J.; Niu, X. R.; Zhang, L.; Chen, R. F.; Shen, Q. M.; Huang, W.; Fan, Q. L. All-in-one phototheranostics: Single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Fun. Mater. 2019, 29, 1901480.

    Article  Google Scholar 

  29. Du, L. H.; Qin, H.; Ma, T.; Zhang, T.; Xing, D. In vivo imaging-guided photothermal/photoacoustic synergistic therapy with bioorthogonal metabolic glycoengineering-activated tumor targeting nanoparticles. ACS Nano 2017, 11, 8930–8943.

    Article  CAS  Google Scholar 

  30. Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew. Chem., Int. Ed. 2008, 47, 1184–1201.

    Article  CAS  Google Scholar 

  31. Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77–88.

    Article  CAS  Google Scholar 

  32. Qin, Y.; Liu, X.; Jia, P. P.; Xu, L.; Yang, H. B. BODIPY-based macrocycles. Chem. Soc. Rev. 2020, 49, 5678–5703.

    Article  CAS  Google Scholar 

  33. Knox, H. J.; Hedhli, J.; Kim, T. W.; Khalili, K.; Dobrucki, L. W.; Chan, J. A bioreducible N-Oxide-based probe for photoacoustic imaging of hypoxia. Nat. Commun. 2017, 8, 1794.

    Article  Google Scholar 

  34. Luan, X.; Guan, Y. Y.; Liu, H. J.; Lu, Q.; Zhao, M.; Sun, D. X.; Lovell, J. F.; Sun, P.; Chen, H. Z.; Fang, S. A tumor vascular-targeted interlocking trimodal nanosystem that induces and exploits hypoxia. Adv. Sci. 2018, 5, 1800034.

    Article  Google Scholar 

  35. Zhang, X. F.; Xiao, Y.; Qi, J.; Qu, J. L.; Kim, B.; Yue, X. L.; Belfield, K. D. Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes. J. Org. Chem. 2013, 78, 9153–9160.

    Article  CAS  Google Scholar 

  36. Zhao J. Z.; Xu, K. J; Yang W. B.; Wang Z. J.; Zhong, F. F. The triplet excited state of Bodipy: Formation, modulation and application. Chem. Soc. Rev. 2015, 44, 8904–8939.

    Article  CAS  Google Scholar 

  37. Knox, H. J.; Chan, J. Acoustogenic Probes: A new frontier in photoacoustic imaging. Acc. Chem. Res. 2018, 51, 2897–2905.

    Article  CAS  Google Scholar 

  38. He, H.; Ji, S. S.; He, Y.; Zhu, A. J.; Zou, Y. L.; Deng, Y. B.; Ke, H. T.; Yang, H.; Zhao, Y. L.; Guo, Z. Q. et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv. Mater. 2017, 29, 1606690.

    Article  Google Scholar 

  39. Huang, H. Y.; Yu, B. L.; Zhang, P. Y.; Huang, J. J.; Chen, Y.; Gasser, G.; Ji, L. N.; Chao, H. Highly charged Ruthenium (II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew. Chem., Int. Ed. 2015, 54, 14049–14052.

    Article  CAS  Google Scholar 

  40. Xu, Y. J.; Zhao, M. L.; Zou, L.; Wu, L. C.; Xie, M. J.; Yang, T. S.; Liu, S. J.; Huang, W.; Zhao, Q. Highly stable and multifunctional aza-BODIPY-based phototherapeutic agent for anticancer treatment. ACS Appl. Mater. Interfaces 2018, 10, 44324–44335.

    Article  CAS  Google Scholar 

  41. Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.

    Article  CAS  Google Scholar 

  42. Ma, B. X.; Zhuang, W. H.; Xu, H.; Li, G. C.; Wang, Y. B. Hierarchical Responsive nanoplatform with two-photon aggregation-induced emission imaging for efficient cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 47259–47269.

    Article  CAS  Google Scholar 

  43. Wang, Z. Y.; Ju, Y. M.; Ali, Z.; Yin, H.; Sheng, F. G.; Lin, J.; Wang, B. D.; Hou, Y. L. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat. Commun. 2019, 10, 4418.

    Article  Google Scholar 

  44. Xiao W. J.; Ma T.; Ge, C.; Xia, W. J.; Sun R. B.; Yu X. Y.; Aa, A. Y.; Wang, G. J. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 2015, 36, 259–267.

    Article  CAS  Google Scholar 

  45. Qian C. G.; Feng, P. J.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Sun, W. J.; Xiao, X. Z.; Hu, X. L.; Bellotti, A.; Shen Q. D. et al. Anaerobe-inspired anticancer nanovesicles. Angew. Chem., Int. Ed. 2017, 129, 2632–2637.

    Article  Google Scholar 

  46. Goel, S.; Cohen, M.; Çömezoglu, S. N.; Perrin, L.; André, F.; Jayabalan, D.; Iacono, L.; Comprelli, A.; Ly, V. T.; Zhang, D. L. et al. The effect of ketoconazole on the pharmacokinetics and pharmacodynamics of ixabepilone: A first in class epothilone B analogue in late-phase clinical development. Clin. Cancer Res. 2008, 14, 2701–2709.

    Article  CAS  Google Scholar 

  47. Zeng, Q.; Zhang, R. J.; Zhang, T.; Xing, D. H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy. Biomaterials 2019, 207, 39–48.

    Article  CAS  Google Scholar 

  48. Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G.. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

    Article  Google Scholar 

  49. Wang, T. T.; Wang, D. G.; Liu, J. P.; Feng, B.; Zhou, F. Y.; Zhang, H. W.; Zhou, L.; Yin, Q.; Zhang, Z. W.; Cao, Z. L. et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 2017, 17, 5429–5436.

    Article  CAS  Google Scholar 

  50. Ni, J.; Wang, X.; Stojanovic, A.; Zhang, Q.; Wincher, M.; Bühler, L.; Arnold, A.; Correia, M. P.; Winkler, M.; Koch, P. S. et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1a unleashes NK cell activity. Immunity 2020, 52, 1075–1087.e8.

    Article  CAS  Google Scholar 

  51. Zhao, X.; Yang, C. X.; Chen, L. G.; Yan, X. P. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat. Commun. 2017, 8, 14998.

    Article  CAS  Google Scholar 

  52. Zheng, J. D.; Zeng, Q.; Zhang, R. J.; Xing, D.; Zhang, T. Dynamic-reversible photoacoustic probe for continuous ratiometric sensing and imaging of redox status in vivo. J. Am. Chem. Soc. 2019, 141, 19226–19230.

    Article  CAS  Google Scholar 

  53. Zhang, G. C.; Liu, J.; Deng, Y.; Dong, L.; Zhu, C. F.; Zhu, J. M.; Weng, S. Q.; Li, Y. Bismuth-based mesoporous nanoball carrying sorafenib for computed tomography imaging and synergetic chemoradiotherapy of hepatocellular carcinoma. Adv. Healthc. Mater. 2020, 9, e2000650.

    Article  Google Scholar 

  54. Tan, X.; Luo, S. L.; Long, L.; Wang, Y.; Wang, D. C.; Fang, S. T.; Ouyang, Q.; Su, Y. P.; Cheng, T. M.; Shi, C. M. Structure-guided design and synthesis of a mitochondria-targeting near-infrared fluorophore with multimodal therapeutic activities. Adv. Mater. 2017, 29, 1704196.

    Article  Google Scholar 

  55. Wang, K. W.; Tu, Y. L.; Yao, W.; Zong, Q. Y.; Jiang, X. Q.; Yuan, Y. Y. Size-switchable nanoparticles with self-destructive and tumor penetration characteristics for site-specific phototherapy of cancer. ACS Appl. Mater. Interfaces 2020, 12, 6933–6943.

    Article  CAS  Google Scholar 

  56. Huang, J. C.; He, B. Z.; Zhang, Z. J.; Li, Y. M.; Kang, M. M.; Wang, Y. W.; Li, K.; Wang, D.; Tang, B. Z. Aggregation-induced emission luminogens married to 2D black phosphorus nanosheets for highly efficient multimodal theranostics. Adv. Mater. 2020, 32, 2003382.

    Article  CAS  Google Scholar 

  57. Cheng, Q.; Li, Z. H.; Sun, Y. X.; Zhang, X. Z. Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors. NPG Asia Mater. 2019, 11, 63.

    Article  CAS  Google Scholar 

  58. Yang Z. L.; Tian, W.; Wang, Q.; Zhao, Y.; Zhang, Y. L.; Tian, Y.; Tang, Y. X.; Wang, S. J.; Liu, Y.; Ni, Q. Q. et al. Oxygen-evolving mesoporous organosilica coated Prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci. 2018, 5, 1700847.

    Article  Google Scholar 

  59. Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nano-particles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.

    Article  CAS  Google Scholar 

  60. Krzykawska-Serda, M.; Dąbrowski, J. M.; Arnaut, L. G.; Szczygieł, M.; Urbańska, K.; Stochel, G.; Elas, M. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy. Free Radic Biol Med. 2014, 73, 239–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21771065), Guangdong Special Support Program (No. 2017TQ04R138), Science and Technology Program of Guangzhou (No. 2019050001), Natural Science Foundation of Guangdong (No. 2019A1515012021), Pearl River Nova Program of Guangzhou (No. 201806010189), and the Major Program of Ningbo Science and Technology Innovation 2025 (No. 2020Z093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Xing or Tao Zhang.

Electronic Supplementary Material

12274_2021_3552_MOESM1_ESM.pdf

Aza-BODIPY-based phototheranostic nanoagent for tissue oxygen auto-adaptive photodynamic/photothermal complementary therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zeng, Q., Li, X. et al. Aza-BODIPY-based phototheranostic nanoagent for tissue oxygen auto-adaptive photodynamic/photothermal complementary therapy. Nano Res. 15, 716–727 (2022). https://doi.org/10.1007/s12274-021-3552-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3552-3

Keywords

Navigation