Skip to main content
Log in

Systemic delivery of microRNA for treatment of brain ischemia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Brain ischemia is the second leading cause of death and the third leading cause of disability in the world. Systemic delivery of microRNA, a class of molecules that regulate the expression of cellular proteins associated with angiogenesis, cell growth, proliferation and differentiation, holds great promise for the treatment of brain ischemia. However, their therapeutic efficacy has been hampered by poor delivery efficiency of microRNA. We report herein a platform technology based on microRNA nanocapsules, which enables their effective delivery to the disease sites in the brain. Exemplified by microRNA-21, intravenous injection of the nanocapsules into a rat model of cerebral ischemia could effectively ameliorate the infarct volume, neurological deficit and histopathological severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isner, J. M. Tissue responses to ischemia: Local and remote responses for preserving perfusion of ischemic muscle. J. Clin. Invest. 2000, 106, 615–619.

    Article  CAS  Google Scholar 

  2. Semenza, G. L. Series introduction: Tissue ischemia: Pathophysiology and therapeutics. J. Clin. Invest. 2000, 106, 613–614.

    Article  CAS  Google Scholar 

  3. Eltzschig, H. K.; Eckle, T. Ischemia and reperfusion-From mechanism to translation. Nat. Med. 2011, 17, 1391–1401.

    Article  CAS  Google Scholar 

  4. Upadhyay, R. K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int. 2014, 2014, 869269.

    Google Scholar 

  5. Rosenberg, G. A. Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1139–1151.

    Article  CAS  Google Scholar 

  6. Gállego, J.; Muñoz, R.; Martínez-Vila, E. Emergent cerebrovascular disease risk factor weighting: Is transient ischemic attack an imminent threat? Cerebrovasc. Dis. 2009, 27, 88–96.

    Google Scholar 

  7. Luengo-Fernandez, R.; Gray, A. M.; Rothwell, P. M. Costs of stroke using patient-level data: A critical review of the literature. Stroke 2009, 40, e18–e23.

    Article  Google Scholar 

  8. Novakovic, R.; Toth, G.; Purdy, P. D. Review of current and emerging therapies in acute ischemic stroke. J. Neurointerv. Surg. 2009, 1, 13–26.

    Article  CAS  Google Scholar 

  9. Hankey, G. J. Stroke. Lancet 2017, 389, 641–654.

    Article  Google Scholar 

  10. Lee, J. M.; Grabb, M. C.; Zipfel, G. J.; Choi, D. W. Brain tissue responses to ischemia. J. Clin. Invest. 2000, 106, 723–731.

    Article  CAS  Google Scholar 

  11. Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K. R.; Medeghri, Z.; Machnig, T. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329.

    Article  CAS  Google Scholar 

  12. Goyal, M.; Yu, A. Y. X.; Menon, B. K.; Dippel, D. W. J.; Hacke, W.; Davis, S. M.; Fisher, M.; Yavagal, D. R.; Turjman, F.; Ross, J. et al. Endovascular therapy in acute ischemic stroke. Stroke 2016, 47, 548–553.

    Article  Google Scholar 

  13. Del Zoppo, G. J.; Saver, J. L.; Jauch, E. C.; Adams, H. P., Jr.; American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: A science advisory from the American Heart Association/American Stroke Association. Stroke 2009, 40, 2945–2948.

    Google Scholar 

  14. Emberson, J.; Lees, K. R.; Lyden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G. et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet 2014, 384, 1929–1935.

    Article  CAS  Google Scholar 

  15. Mead, G. E.; Hsieh, C. F.; Lee, R.; Kutlubaev, M. A.; Claxton, A.; Hankey, G. J.; Hackett, M. L. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst. Rev. 2012, 11, CD009286.

    Google Scholar 

  16. Mortensen, J. K.; Andersen, G. Safety of selective serotonin reuptake inhibitor treatment in recovering stroke patients. Expert Opin. Drug Saf. 2015, 14, 911–919.

    Article  CAS  Google Scholar 

  17. Prasad, K.; Sharma, A.; Garg, A.; Mohanty, S.; Bhatnagar, S.; Johri, S.; Singh, K. K.; Nair, V.; Sarkar, R. S.; Gorthi, S. P. et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke 2014, 45, 3618–3624.

    Article  CAS  Google Scholar 

  18. Kalladka, D.; Sinden, J.; Pollock, K.; Haig, C.; McLean, J.; Smith, W.; McConnachie, A.; Santosh, C.; Bath, P. M.; Dunn, L. et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet 2016, 388, 787–796.

    Article  Google Scholar 

  19. Beavers, K. R.; Nelson, C. E.; Duvall, C. L. MiRNA inhibition in tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev. 2015, 88, 123–137.

    Article  CAS  Google Scholar 

  20. Inui, M.; Martello, G.; Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 2010, 11, 252–263.

    Article  CAS  Google Scholar 

  21. Caputo, M.; Saif, J.; Rajakaruna, C.; Brooks, M.; Angelini, G. D.; Emanueli, C. MicroRNAs in vascular tissue engineering and postischemic neovascularization. Adv. Drug Deliv. Rev. 2015, 88, 78–91.

    Article  CAS  Google Scholar 

  22. Liang, T. Y.; Lou, J. Y. Increased expression of mir-34a-5p and clinical association in acute ischemic stroke patients and in a rat model. Med. Sci. Monit. 2016, 22, 2950–2955.

    Article  CAS  Google Scholar 

  23. Zhao, H. P.; Wang, J.; Gao, L.; Wang, R. L.; Liu, X. R.; Gao, Z.; Tao, Z.; Xu, C. M.; Song, J. X.; Ji, X. M. et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 2013, 44, 1706–1713.

    Article  CAS  Google Scholar 

  24. Buller, B.; Liu, X. S.; Wang, X. L.; Zhang, R. L.; Zhang, L.; Hozeska-Solgot, A.; Chopp, M.; Zhang, Z. G. MicroRNA-21 protects neurons from ischemic death. FEBS J. 2010, 277, 4299–4307.

    Article  CAS  Google Scholar 

  25. Chen, Y. C.; Gao, D. Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 2015, 81, 128–141.

    Article  CAS  Google Scholar 

  26. Kim, J.; Cao, L.; Shvartsman, D.; Silva, E. A.; Mooney, D. J. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011, 11, 694–700.

    Article  CAS  Google Scholar 

  27. Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. RNA interference in the clinic: Challenges and future directions. Nat. Rev. Cancer 2011, 11, 59–67.

    Article  CAS  Google Scholar 

  28. Vickers, K. C.; Remaley, A. T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol. 2012, 23, 91–97.

    Article  CAS  Google Scholar 

  29. Crooke, S. T.; Graham, M. J.; Zuckerman, J. E.; Brooks, D.; Conklin, B. S.; Cummins, L. L.; Greig, M. J.; Guinosso, C. J.; Kornbrust, D.; Manoharan, M. et al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. Pharmacol. Exp. Ther. 1996, 277, 923–937.

    CAS  Google Scholar 

  30. Cheng, C. J.; Bahal, R.; Babar, I. A.; Pincus, Z.; Barrera, F.; Liu, C.; Svoronos, A.; Braddock, D. T.; Glazer, P. M.; Engelman, D. M. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015, 518, 107–110.

    Article  CAS  Google Scholar 

  31. Davis, M. E.; Zuckerman, J. E.; Choi, C. H. J.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070.

    Article  CAS  Google Scholar 

  32. Gibbings, D. J.; Ciaudo, C.; Erhardt, M.; Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 2009, 11, 1143–1149.

    Article  CAS  Google Scholar 

  33. Yang, Y. P.; Chien, Y.; Chiou, G. Y.; Cherng, J. Y.; Wang, M. L.; Lo, W. L.; Chang, Y. L.; Huang, P. I.; Chen, Y. W.; Shih, Y. H. et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2012, 33, 1462–1476.

    Article  CAS  Google Scholar 

  34. Chiou, G. Y.; Cherng, J. Y.; Hsu, H. S.; Wang, M. L.; Tsai, C. M.; Lu, K. H.; Chien, Y.; Hung, S. C.; Chen, Y. W.; Wong, C. I. et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J. Control. Release 2012, 159, 240–250.

    Article  CAS  Google Scholar 

  35. Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.

    Article  CAS  Google Scholar 

  36. Zhang, Y.; Wang, Z. J.; Gemeinhart, R. A. Progress in microRNA delivery. J. Control. Release 2013, 172, 962–974.

    Article  CAS  Google Scholar 

  37. Hwang, D. W.; Son, S.; Jang, J.; Youn, H.; Lee, S.; Lee, D.; Lee, Y. S.; Jeong, J. M.; Kim, W. J.; Lee, D. S. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials 2011, 32, 4968–4975.

    Article  CAS  Google Scholar 

  38. Zhang, S. L.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Sizedependent endocytosis of nanoparticles. Adv. Mater. 2009, 21, 419–424.

    Article  CAS  Google Scholar 

  39. David, S.; Pitard, B.; Benoît, J. P.; Passirani, C. Non-viral nanosystems for systemic siRNA delivery. Pharmacol. Res. 2010, 62, 100–114.

    Article  CAS  Google Scholar 

  40. Ge, X. T.; Lei, P.; Wang, H. C.; Zhang, A. L.; Han, Z. L.; Chen, X.; Li, S. H.; Jiang, R. C.; Kang, C. S.; Zhang, J. N. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci. Rep. 2014, 4, 6718.

    Article  Google Scholar 

  41. Shi, S. J.; Han, L.; Gong, T.; Zhang, Z. R.; Sun, X. Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew. Chem., Int. Ed. 2013, 52, 3901–3905.

    Article  CAS  Google Scholar 

  42. Gref, R.; Domb, A.; Quellec, P.; Blunk, T.; Müller, R. H.; Verbavatz, J. M.; Langer, R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 1995, 16, 215–233.

    Article  CAS  Google Scholar 

  43. White, R. E.; Giffard, R. G. MicroRNA-320 induces neurite outgrowth by targeting ARPP-1. NeuroReport 2012, 23, 590–595.

    Article  CAS  Google Scholar 

  44. Liu, T. L.; Li, L. L.; Fu, C. H.; Liu, H. Y.; Chen, D.; Tang, F. Q. Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 2012, 33, 2399–2407.

    Article  CAS  Google Scholar 

  45. Oladipupo, S.; Hu, S.; Kovalski, J.; Yao, J. J.; Santeford, A.; Sohn, R. E.; Shohet, R.; Maslov, K.; Wang, L. V.; Arbeit, J. M. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc. Natl. Acad. Sci. USA 2011, 108, 13264–13269.

    Article  CAS  Google Scholar 

  46. Zhang, P.; Lei, X. H.; Sun, Y.; Zhang, H. T.; Chang, L.; Li, C. L.; Liu, D. M.; Bhatta, N.; Zhang, Z. R.; Jiang, C. L. Regenerative repair of Pifithrin-a in cerebral ischemia via VEGF dependent manner. Sci. Rep. 2016, 6, 26295.

    Article  CAS  Google Scholar 

  47. Deshpande, N.; Ren, Y.; Foygel, K.; Rosenberg, J.; Willmann, J. K. Tumor angiogenic marker expression levels during tumor growth: Longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 2011, 258, 804–811.

    Article  Google Scholar 

  48. Yang, Z. H.; Wang, K. K. W. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374.

    Article  CAS  Google Scholar 

  49. Yan, M.; Liang, M.; Wen, J.; Liu, Y.; Lu, Y. F.; Chen, I. S. Y. Single siRNA nanocapsules for enhanced RNAi delivery. J. Am. Chem. Soc. 2012, 134, 13542–13545.

    Article  CAS  Google Scholar 

  50. Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022–1031.

    Article  CAS  Google Scholar 

  51. Liu, C. Y.; Wen, J.; Meng, Y. B.; Zhang, K. L.; Zhu, J. L.; Ren, Y.; Qian, X. M.; Yuan, X. B.; Lu, Y. F.; Kang, C. S. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv. Mater. 2015, 27, 292–297.

    Article  CAS  Google Scholar 

  52. Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.

    Article  CAS  Google Scholar 

  53. Liu, X.; An, C. Y.; Jin, P.; Liu, X. S.; Wang, L. H. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials 2013, 34, 817–830.

    Article  CAS  Google Scholar 

  54. Pignataro, G.; Scorziello, A.; Di Renzo, G.; Annunziato, L. Postischemic brain damage: Effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J. 2009, 276, 46–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0903801), the National Natural Science Foundation of China (Nos. 52073015, 51773151, 52003021, and 81671169), Tianjin Municipal Health Bureau (No. 2010KY11), Postdoctoral Science Foundation of China (No. 2015M580212), and Fundamental Research Funds for the Central Universities (No. ZY2006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Liu, Jin Zhao, Chunsheng Kang or Yunfeng Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wen, J., Li, D. et al. Systemic delivery of microRNA for treatment of brain ischemia. Nano Res. 14, 3319–3328 (2021). https://doi.org/10.1007/s12274-021-3413-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3413-8

Keywords

Navigation