Skip to main content
Log in

Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxidative stress is associated with many acute and chronic inflammatory diseases. Development of nanomaterial-based enzyme mimetics for reactive oxygen species (ROS) scavenging is challenging, but holds great promise for the treatment of inflammatory diseases. Herein, we report the highly ordered manganese dioxide encapsulated selenium-melanin (Se@Me@MnO2) nanozyme with high efficiency for intracellular antioxidation and anti-inflammation. The Se@Me@MnO2 nanozyme is sequentially fabricated through the radical polymerization and the in-situ oxidation-reduction. In vitro experimental results demonstrated that the Se@Me@MnO2 nanozyme exhibits multiple enzyme activities to scavenge ROS, including catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD). Mechanism researches illustrated that the Se core possesses GPx-like catalytic activity, the Me and the MnO2 possess both the SOD-like and the CAT-like activities. What’s more, due to the stable unpaired electrons existing in the nanozyme, the Se, Me and MnO2 provide synergistic and fast electron transfer effect to achieve the quickly scavenging of hydrogen peroxide, hydroxyl radical, and superoxide anion. Further in vivo experimental results showed that this biocompatible nanozyme exhibits cytoprotective effects by resisting ROS-mediated damage, thereby alleviating the inflammation. This multienzyme mimetics is believed to be an excellent ROS scavenger and have a good potential in clinical therapy for ROS-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noubade, R.; Wong, K.; Ota, N.; Rutz, S.; Eidenschenk, C.; Valdez, P. A.; Ding, J. B.; Peng, I.; Sebrell, A.; Caplazi, P. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 2014, 509, 235–239.

    Article  CAS  Google Scholar 

  2. Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

    Article  CAS  Google Scholar 

  3. Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.

    Article  CAS  Google Scholar 

  4. Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

    Article  CAS  Google Scholar 

  5. Tong, L. Y.; Chuang, C. C.; Wu, S. Y.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25.

    Article  CAS  Google Scholar 

  6. Panieri, E.; Santoro, M. M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death. Dis. 2016, 7, e2253.

    Article  CAS  Google Scholar 

  7. Chouchani, E. T.; Kazak, L.; Jedrychowski, M. P.; Lu, G. Z.; Erickson, B. K.; Szpyt, J.; Pierce, K. A.; Laznik-Bogoslavski, D.; Vetrivelan, R.; Clish, C. B. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 2016, 532, 112–116.

    Article  CAS  Google Scholar 

  8. Zhao, Z. H.; Wang, W. Q.; Li, C. X.; Zhang, Y. Q.; Yu, T. R.; Wu, R. F.; Zhao, J. Y.; Liu, Z.; Liu, J.; Yu, H. J. Reactive oxygen species-activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies. Adv. Funct. Mater. 2019, 29, 1905013.

    Article  CAS  Google Scholar 

  9. Houstis, N.; Rosen, E. D.; Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948.

    Article  CAS  Google Scholar 

  10. Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247.

    Article  CAS  Google Scholar 

  11. Allen, C. L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 2009, 4, 461–470.

    Article  CAS  Google Scholar 

  12. Xu, X. D.; Saw, P. E.; Tao, W.; Li, Y. J.; Ji, X. Y.; Bhasin, S.; Liu, Y. L.; Ayyash, D.; Rasmussen, J.; Huo, M. et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 2017, 29, 1700141.

    Article  CAS  Google Scholar 

  13. Bian, P. X.; Zhang, J. X.; Wang, J. Y.; Yang, J.; Wang, J. Y.; Liu, H. L.; Sun, Y. M.; Li, M. X.; Zhang, X. D. Enhanced catalysis of ultrasmall Au-MoS2 clusters against reactive oxygen species for radiation protection. Sci. Bull. 2018, 63, 925–934.

    Article  CAS  Google Scholar 

  14. Imlay, J. A.; Linn, S. DNA damage and oxygen radical toxicity. Science 1988, 240, 1302–1309.

    Article  CAS  Google Scholar 

  15. Diehn, M.; Cho, R. W.; Lobo, N. A.; Kalisky, T.; Dorie, M. J.; Kulp, A. N.; Qian, D. L.; Lam, J. S.; Ailles, L. E.; Wong, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009, 458, 780–783.

    Article  CAS  Google Scholar 

  16. Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.

    Article  CAS  Google Scholar 

  17. Puente, B. N.; Kimura, W.; Muralidhar, S. A.; Moon, J.; Amatruda, J. F.; Phelps, K. L.; Grinsfelder, D.; Rothermel, B. A.; Chen, R.; Garcia, J. A. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014, 157, 565–579.

    Article  CAS  Google Scholar 

  18. Roth, T. L.; Nayak, D.; Atanasijevic, T.; Koretsky, A. P.; Latour, L. L.; McGavern, D. B. Transcranial amelioration of inflammation and cell death after brain injury. Nature 2014, 505, 223–228.

    Article  CAS  Google Scholar 

  19. Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

    Article  CAS  Google Scholar 

  20. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  21. Liu, Y. L.; Shi, J. J. Antioxidative nanomaterials and biomedical applications. Nano Today 2019, 27, 146–177.

    Article  CAS  Google Scholar 

  22. Zhu, X.; Radovic-Moreno, A. F.; Wu, J.; Langer, R.; Shi, J. J. Nanomedicine in the management of microbial infection-overview and perspectives. Nano Today 2014, 9, 478–498.

    Article  CAS  Google Scholar 

  23. Liu, X. L.; Pan, Y. C.; Yang, J. J.; Gao, Y. F.; Huang, T.; Luan, X. W.; Wang, Y. Z.; Song, Y. J. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Res. 2020, 13, 653–660.

    Article  CAS  Google Scholar 

  24. Kim, C. K.; Kim, T.; Choi, I. Y.; Soh, M.; Kim, D.; Kim, Y. J.; Jang, H.; Yang, H. S.; Kim, J. Y.; Park, H. K. et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem., Int. Ed. 2012, 51, 11039–11043.

    Article  CAS  Google Scholar 

  25. Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1835.

    Article  CAS  Google Scholar 

  26. Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399–11403.

    Article  CAS  Google Scholar 

  27. Gao, Z. Y.; Horiguchi, Y.; Nakai, K.; Matsumura, A.; Suzuki, M.; Ono, K.; Nagasaki, Y. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016, 104, 201–212.

    Article  CAS  Google Scholar 

  28. Panzella, L.; Gentile, G.; D’Errico, G.; Della Vecchia, N. F.; Errico, M. E.; Napolitano, A.; Carfagna, C.; d’Ischia, M. Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew. Chem., Int. Ed. 2013, 52, 12684–12687.

    Article  CAS  Google Scholar 

  29. Liu, Y.; Xiang, Y. P.; Zhen, Y. L.; Guo, R. Halide ion-induced switching of gold nanozyme activity based on Au-X interactions. Langmuir 2017, 33, 6372–6381.

    Article  CAS  Google Scholar 

  30. Bao, X. F.; Zhao, J. H.; Sun, J.; Hu, M.; Yang, X. R. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882–8892.

    Article  CAS  Google Scholar 

  31. Lunov, O.; Syrovets, T.; Loos, C.; Nienhaus, G. U.; Mailänder, V.; Landfester, K.; Rouis, M.; Simmet, T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 2011, 5, 9648–9657.

    Article  CAS  Google Scholar 

  32. Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem., Int. Ed. 2017, 56, 9910–9914.

    Article  CAS  Google Scholar 

  33. Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224–9237.

    Article  CAS  Google Scholar 

  34. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  35. Zhang, J. Y.; Wu, S. H.; Ma, L. Z.; Wu, P.; Liu, J. W. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Res. 2020, 13, 455–460.

    Article  CAS  Google Scholar 

  36. Vernekar, A. A.; Sinha, D.; Srivastava, S.; Paramasivam, P. U.; D’Silva, P.; Mugesh, G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014, 5, 5301.

    Article  CAS  Google Scholar 

  37. Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  CAS  Google Scholar 

  38. Lin, S. C.; Cheng, Y.; Zhang, H.; Wang, X. Y.; Zhang, Y. Y.; Zhang, Y. J.; Miao, L. Y.; Zhao, X. Z.; Wei, H. Copper tannic acid coordination nanosheet: A potent nanozyme for scavenging ROS from cigarette smoke. Small 2020, 15, 1902123.

    Article  CAS  Google Scholar 

  39. Li, W.; Liu, Z.; Liu, C. Q.; Guan, Y. J.; Ren, J. S.; Qu, X. G. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew. Chem., Int. Ed. 2017, 56, 13661–13665.

    Article  CAS  Google Scholar 

  40. Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

    Article  CAS  Google Scholar 

  41. Xin, Q.; Jia, X. R.; Nawaz, A.; Xie, W. J.; Li, L. T.; Gong, J. R. Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots. Nano Res. 2020, 13, 1427–1433.

    Article  CAS  Google Scholar 

  42. Lian, M. L.; Xue, Z. J.; Qiao, X. Z.; Liu, C.; Zhang, S.; Li, X.; Huang, C. H.; Song, Q.; Yang, W. S.; Chen, X. et al. Movable hollow nanoparticles as reactive oxygen scavengers. Chem 2019, 5, 2378–2387.

    Article  CAS  Google Scholar 

  43. Huang, Y. Y.; Liu, Z.; Liu, C. Q.; Ju, E. G.; Zhang, Y.; Ren, J. S.; Qu, X. G. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem., Int. Ed. 2016, 55, 6646–6650.

    Article  CAS  Google Scholar 

  44. Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

    Article  CAS  Google Scholar 

  45. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

  46. Ai, Y. J.; Hu, Z. N.; Liu, L.; Zhou, J. J.; Long, Y.; Li, J. F.; Ding, M. Y.; Sun, H. B.; Liang, Q. L. Magnetically hollow Pt nanocages with ultrathin walls as a highly integrated nanoreactor for catalytic transfer hydrogenation reaction. Adv. Sci. 2019, 6, 1802132.

    Article  CAS  Google Scholar 

  47. Yang, S. W.; Sun, J.; He, P.; Deng, X. X.; Wang, Z. Y.; Hu, C. Y.; Ding, G. Q.; Xie, X. M. Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch. Chem. Mater. 2015, 27, 2004–2011.

    Article  CAS  Google Scholar 

  48. Zhu, S.; Zhou, H.; Hibino, M.; Honma, I.; Ichihara, M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 2005, 15, 381–386.

    Article  CAS  Google Scholar 

  49. Zhu, W. W.; Dong, Z. L.; Fu, T. T.; Liu, J. J.; Chen, Q.; Li, Y. G.; Zhu, R.; Xu, L. G.; Liu, Z. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photo-dynamic therapy. Adv. Funct. Mater. 2016, 26, 5490–5498.

    Article  CAS  Google Scholar 

  50. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Zone Project (No. 18-163-12-ZT-003-077-01), Health Major Project (Nos. BWS17J028 and AWS16J018) and National Natural Science Foundation of China (Nos. 81872835, 21621003, and 21563010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qionglin Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., You, J., Gao, J. et al. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res. 14, 2644–2653 (2021). https://doi.org/10.1007/s12274-020-3267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3267-x

Keywords

Navigation