Skip to main content
Log in

3D printing of metal-based materials for renewable energy applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large-scale renewable energy must overcome conversion and storage challenges before it can replace fossil fuels due to its intermittent nature. However, current sustainable energy devices still suffer from high cost, low efficiency, and poor service life problems. Recently, porous metal-based materials have been widely used as desirable cross-functional platforms for electrochemical and photochemical energy systems for their unique electrical conductivity, catalytic activity, and chemical stability. To tailor the porosity length scale, ordering, and compositions, 3D printing has been applied as a disruptive manufacturing revolution to create complex architected components by directly joining sequential layers into designed structures. This article intends to summarize cutting-edge advances of metal-based materials for renewable energy devices (e.g., fuel cells, solar cells, supercapacitors, and batteries) over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheffran, J.; Felkers, M.; Froese, R. Economic growth and the global energy demand. In Green Energy to Sustainability: Strategies for Global Industries; Vertès, A. A.; Qureshi, N.; Blaschek, H. P.; Yukawa, H., Eds.; Wiley & Sons Ltd: 2020; pp 1–44.

  2. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  3. Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.

    CAS  Google Scholar 

  4. Rui, X. H.; Tan, H. T.; Yan, Q. Y. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924.

    CAS  Google Scholar 

  5. Gu, P.; Zheng, M. B.; Zhao, Q. X.; Xiao, X.; Xue, H. G.; Pang, H. Rechargeable zinc-air batteries: A promising way to green energy. J. Mater. Chem. A 2017, 5, 7651–7666.

    CAS  Google Scholar 

  6. Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 2017, 10, 3942–3969.

    CAS  Google Scholar 

  7. Castillo-Blas, C.; Álvarez-Galván, C.; Puente-Orench, I.; García-Sánchez, A.; Oropeza, F. E.; Gutiérrez-Puebla, E.; Monge, Á.; de la Peña-O’Shea, V. A.; Gándara, F. Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Res. 2021, 14, 493–500.

    Google Scholar 

  8. Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063–2071.

    CAS  Google Scholar 

  9. Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

    CAS  Google Scholar 

  10. Da, P. M.; Zheng, G. F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471–1497.

    CAS  Google Scholar 

  11. Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

    CAS  Google Scholar 

  12. Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

    CAS  Google Scholar 

  13. Kenney, M. J.; Huang, J. E.; Zhu, Y.; Meng, Y. T.; Xu, M. Q.; Zhu, G. Z.; Hung, W. H.; Kuang, Y.; Lin, M. C.; Sun, X. M. et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Res. 2019, 12, 1431–1435.

    CAS  Google Scholar 

  14. Li, Q. Y.; Lian, T. Q. Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures. Nano Res. 2018, 11, 3031–3049.

    CAS  Google Scholar 

  15. Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025–3032.

    CAS  Google Scholar 

  16. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  17. Thalluri, S. M.; Borme, J.; Yu, K.; Xu, J. Y.; Amorim, I.; Gaspar, J.; Qiao, L.; Ferreira, P.; Alpuim, P.; Liu, L. F. Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution. Nano Res. 2018, 11, 4823–4835.

    CAS  Google Scholar 

  18. Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An Efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    CAS  Google Scholar 

  19. Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329.

    CAS  Google Scholar 

  20. Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

    CAS  Google Scholar 

  21. Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

    Google Scholar 

  22. Zhao, C. L.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Ni-based cathode materials for Na-ion batteries. Nano Res. 2019, 12, 2018–2030.

    CAS  Google Scholar 

  23. Zhu, S. H.; Chen, C.; He, P.; Tan, S. S.; Xiong, F. Y.; Liu, Z. A.; Peng, Z.; An, Q. Y.; Mai, L. Q. Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage. Nano Res. 2019, 12, 1371–1374.

    CAS  Google Scholar 

  24. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    CAS  Google Scholar 

  25. Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    CAS  Google Scholar 

  26. Qiu, H. J.; Xu, H. T.; Liu, L.; Wang, Y. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale 2015, 7, 386–400.

    CAS  Google Scholar 

  27. Mohamed, S. A.; Al-Sulaiman, F. A.; Ibrahim, N. I.; Zahir, H.; Al-Ahmed, A.; Saidur, R.; Yilbaş, B. S.; Sahin, A. Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089.

    CAS  Google Scholar 

  28. Song, H. K.; Lee, K. T.; Kim, M. G.; Nazar, L. F.; Cho, J. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv. Funct. Mater. 2010, 20, 3818–3834.

    CAS  Google Scholar 

  29. Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

    CAS  Google Scholar 

  30. Luciani, G.; Imparato, C.; Vitiello, G. Photosensitive hybrid nano-structured materials: The big challenges for sunlight capture. Catalysts 2020, 10, 103.

    CAS  Google Scholar 

  31. Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297.

    CAS  Google Scholar 

  32. Yan, X. F.; Han, W. Q. Preparation and application of garnet electrolyte thin films: Promise and challenges. Org. Chem. Plus 2020, 1, 6–22.

    Google Scholar 

  33. Kumar, S.; Saralch, S.; Jabeen, U.; Pathak, D. Metal oxides for energy applications. In Colloidal Metal Oxide Nanoparticles; Thomas, A.; Sunny, A. T.; Velayudhan, P., Eds.; Elsevier: Amsterdam, 2020; pp 471–504.

    Google Scholar 

  34. Graedel, T. E. On the future availability of the energy metals. Annu. Rev. Mater. Res. 2011, 41, 323–335.

    CAS  Google Scholar 

  35. Wang, H. L.; Zhu, Q. L.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52–80.

    CAS  Google Scholar 

  36. Huang, A. Q.; He, Y. Z.; Zhou, Y. Z.; Zhou, Y. Y.; Yang, Y.; Zhang, J. C.; Luo, L.; Mao, Q. M.; Hou, D. M.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 2019, 54, 949–973.

    CAS  Google Scholar 

  37. Ambrosi, A.; Webster, R. D. 3D printing for aqueous and non-aqueous redox flow batteries. Curr. Opin. Electrochem. 2020, 20, 28–35.

    CAS  Google Scholar 

  38. Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755.

    CAS  Google Scholar 

  39. Buchanan, C.; Gardner, L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng. Struct. 2019, 180, 332–348.

    Google Scholar 

  40. Chen, Z. W.; Li, Z. Y.; Li, J. J.; Liu, C. B.; Lao, C. S.; Fu, Y. L.; Liu, C. Y.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687.

    CAS  Google Scholar 

  41. Chen, L.; Tang, X. W.; Xie, P. W.; Xu, J.; Chen, Z. H.; Cai, Z. C.; He, P. S.; Zhou, H.; Zhang, D.; Fan, T. X. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction. Chem. Mater. 2018, 30, 799–806.

    CAS  Google Scholar 

  42. Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.

    CAS  Google Scholar 

  43. Ambrosi, A.; Moo, J. G. S.; Pumera, M. Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv. Funct. Mater. 2016, 26, 698–703.

    CAS  Google Scholar 

  44. Egorov, V.; Gulzar, U.; Zhang, Y.; Breen, S.; O’Dwyer, C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 2020, 32, 2000556.

    CAS  Google Scholar 

  45. Ruiz-Morales, J. C.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Marin Rueda, J. R.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859.

    CAS  Google Scholar 

  46. Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783–2810.

    CAS  Google Scholar 

  47. Anant Pidge, P.; Kumar, H. Additive manufacturing: A review on 3D printing of metals and study of residual stress, buckling load capacity of strut members. Mater. Today 2020, 21, 1689–1694.

    CAS  Google Scholar 

  48. Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610.

    CAS  Google Scholar 

  49. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172–196.

    CAS  Google Scholar 

  50. Fu, Y. L.; Xu, G.; Chen, Z. W.; Liu, C. Y.; Wang, D. M.; Lao, C. S. Multiple metals doped polymer-derived SiOC ceramics for 3D printing. Ceram. Int. 2018, 44, 11030–11038.

    CAS  Google Scholar 

  51. Chen, W.; Watts, S.; Jackson, J. A.; Smith, W. L.; Tortorelli, D. A.; Spadaccini, C. M. Stiff isotropic lattices beyond the Maxwell criterion. Sci. Adv. 2019, 5, eaaw1937.

    CAS  Google Scholar 

  52. Bartolo, P. J.; Gaspar, J. Metal filled resin for stereolithography metal part. CIRP Ann 2008, 57, 235–238.

    Google Scholar 

  53. Zheng, X. Y.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A. et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344, 1373–1377.

    CAS  Google Scholar 

  54. Li, Y.; Wang, C. T.; Yuan, H. W.; Liu, N.; Zhao, H. L.; Li, X. L. A 5G MIMO antenna manufactured by 3-D printing method. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 657–660.

    Google Scholar 

  55. Yang, Y.; Chen, Z. Y.; Song, X.; Zhu, B. P.; Hsiai, T.; Wu, P. I.; Xiong, R.; Shi, J.; Chen, Y.; Zhou, Q. F. et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 2016, 22, 414–421.

    CAS  Google Scholar 

  56. Duda, T.; Raghavan, L. V. 3D metal printing technology. IFAC-PapersOnLine 2016, 49, 103–110.

    Google Scholar 

  57. Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2015, 229, 2132–2147.

    CAS  Google Scholar 

  58. Frazier, W. E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928.

    CAS  Google Scholar 

  59. King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2015, 2, 041304.

    Google Scholar 

  60. Shirazi, S. F. S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H. S. C.; Adib Kadri, N.; Osman, N. A. A. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 2015, 16, 033502.

    Google Scholar 

  61. Wang, Y. M.; Voisin, T.; McKeown, J. T.; Ye, J. C.; Calta, N. P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T. T. et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71.

    CAS  Google Scholar 

  62. Ren, J.; Mahajan, C.; Liu, L.; Follette, D.; Chen, W.; Mukherjee, S. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy. Metals 2019, 9, 1029.

    CAS  Google Scholar 

  63. Lieberwirth, C.; Harder, A.; Seitz, H. Extrusion based additive manufacturing of metal parts. J. Mech. Eng. Autom. 2017, 7, 79–83.

    Google Scholar 

  64. Ren, X. Y.; Shao, H. P.; Lin, T.; Zheng, H. 3D gel-printing—An additive manufacturing method for producing complex shape parts. Mater. Des. 2016, 101, 80–87.

    CAS  Google Scholar 

  65. Xu, C.; Quinn, B.; Lebel, L. L.; Therriault, D.; L’Espérance, G. Multimaterial direct ink writing (DIW) for complex 3D metallic structures with removable supports. ACS Appl. Mater. Interfaces 2019, 11, 8499–8506.

    CAS  Google Scholar 

  66. Gysling, H. J. Nanoinks in inkjet metallization—Evolution of simple additive-type metal patterning. Curr. Opin. Colloid Interface Sci. 2014, 19, 155–162.

    CAS  Google Scholar 

  67. Agarwala, S.; Goh, G. L.; Yeong, W. Y. Optimizing aerosol jet printing process of silver ink for printed electronics. IOP Conf. Ser. Mater. Sci. Eng. 2017, 191, 012027.

    Google Scholar 

  68. Zhu, C.; Qi, Z.; Beck, V. A.; Luneau, M.; Lattimer, J.; Chen, W.; Worsley, M. A.; Ye, J. C.; Duoss, E. B.; Spadaccini, C. M. et al. Toward digitally controlled catalyst architectures: Hierarchical nano-porous gold via 3D printing. Sci. Adv. 2018, 4, eaas9459.

    CAS  Google Scholar 

  69. Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Metallic architectures from 3D-printed powder-based liquid inks. Adv. Funct. Mater. 2015, 25, 6985–6995.

    CAS  Google Scholar 

  70. Skylar-Scott, M. A.; Gunasekaran, S.; Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Natl Acad Sci USA 2016, 113, 6137–6142.

    CAS  Google Scholar 

  71. Jordan, R. S.; Wang, Y. 3D printing of conjugated polymers. J. Polym. Sci. Part B: Polym. Phys. 2019, 57, 1592–1605.

    CAS  Google Scholar 

  72. An, B. W.; Kim, K.; Lee, H.; Kim, S. Y.; Shim, Y.; Lee, D. Y.; Song, J. Y.; Park, J. U. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 2015, 27, 4322–4328.

    CAS  Google Scholar 

  73. Chou, D. T.; Wells, D.; Hong, D.; Lee, B.; Kuhn, H.; Kumta, P. N. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013, 9, 8593–8603.

    CAS  Google Scholar 

  74. Maleksaeedi, S.; Wang, J. K.; El-Hajje, A.; Harb, L.; Guneta, V.; He, Z. M.; Wiria, F. E.; Choong, C.; Ruys, A. J. Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth. Procedia CIRP 2013, 5, 158–163.

    Google Scholar 

  75. Rahman, T.; Renaud, L.; Heo, D.; Renn, M.; Panat, R. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures. J. Micromech. Microeng. 2015, 25, 107002.

    Google Scholar 

  76. Foresti, D.; Kroll, K. T.; Amissah, R.; Sillani, F.; Homan, K. A.; Poulikakos, D.; Lewis, J. A. Acoustophoretic printing. Sci. Adv. 2018, 4, eaat1659.

    CAS  Google Scholar 

  77. Hascoët, J. Y.; Parrot, J.; Mognol, P.; Willmann, E. Induction heating in a wire additive manufacturing approach. Weld World 2018, 62, 249–257.

    Google Scholar 

  78. Sukhotskiy, V.; Karampelas, I. H.; Garg, G.; Verma, A.; Tong, M.; Vader, S.; Vader, Z.; Furlani, E. P. Magnetohydrodynamic drop-on-demand liquid metal 3D printing. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, An Additive Manufacturing Conference, Austin, USA, 2017, pp 1806–1811.

  79. Wittstock, A.; Bäumer, M. Catalysis by unsupported skeletal gold catalysts. Acc. Chem. Res. 2014, 47, 731–739.

    CAS  Google Scholar 

  80. Erlebacher, J.; Snyder, J. Dealloyed nanoporous metals for PEM fuel cell catalysis. ECS Trans. 2009, 25, 603–612.

    CAS  Google Scholar 

  81. Hoang, T. T. H.; Ma, S. C.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 2017, 7, 3313–3321.

    CAS  Google Scholar 

  82. Yao, R. Q.; Lang, X. Y.; Jiang, Q. Recent advances of nanoporous metal-based catalyst: Synthesis, application and perspectives. J. Iron Steel Res. Int. 2019, 26, 779–795.

    CAS  Google Scholar 

  83. Ding, Y.; Chen, M. W. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569–576.

    CAS  Google Scholar 

  84. Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scr. Mater. 2003, 49, 991–996.

    CAS  Google Scholar 

  85. Artymowicz, D. M.; Erlebacher, J.; Newman, R. C. Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philos. Mag. 2009, 89, 1663–1693.

    CAS  Google Scholar 

  86. Hayes, J. R.; Hodge, A. M.; Biener, J.; Hamza, A. V.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res. 2006, 21, 2611–2616.

    CAS  Google Scholar 

  87. Wang, N.; Pan, Y.; Wu, S. K. Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses. J. Mater. Sci. Technol. 2018, 34, 1162–1171.

    Google Scholar 

  88. Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. Microwave synthesis of nanoporous materials. ChemPhysChem, 2006, 7, 296–319.

    CAS  Google Scholar 

  89. Zhou, M.; Gao, Y. A.; Wang, B. X.; Rozynek, Z.; Fossum, J. O. Carbonate-assisted hydrothermal synthesis of nanoporous CuO microstructures and their application in catalysis. Eur. J. Inorg. Chem. 2010, 2010, 729–734.

    Google Scholar 

  90. Dabbawala, A. A.; Tzitzios, V.; Sunny, K.; Polychronopoulou, K.; Basina, G.; Ismail, I.; Pillai, V.; Tharalekshmy, A.; Stephen, S.; Alhassan, S. M. Synthesis of nanoporous zeolite-Y and zeolite-Y/GO nano-composite using polyelectrolyte functionalized graphene oxide. Surf. Coat. Technol. 2018, 350, 369–375.

    CAS  Google Scholar 

  91. Zhao, J. Z.; Tao, Z. L.; Liang, J.; Chen, J. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries. Cryst. Growth Des. 2008, 8, 2799–2805.

    CAS  Google Scholar 

  92. Yang, L. T.; Qiu, L. G.; Hu, S. M.; Jiang, X.; Xie, A. J.; Shen, Y. H. Rapid hydrothermal synthesis of MIL-101(Cr) metal-organic framework nanocrystals using expanded graphite as a structure-directing template. Inorg. Chem. Commun. 2013, 35, 265–267.

    CAS  Google Scholar 

  93. Zhang, Y. Z.; Sun, X. H.; Nomura, N.; Fujita, T. Hierarchical nanoporous copper architectures via 3D printing technique for highly efficient catalysts. Small 2019, 15, 1805432.

    Google Scholar 

  94. Yang, C.; Zhang, C.; Liu, L. Excellent degradation performance of 3D hierarchical nanoporous structures of copper towards organic pollutants. J. Mater. Chem. A 2018, 6, 20992–21002.

    CAS  Google Scholar 

  95. Tian, C. H.; Zhang, S. F.; Wang, H. B.; Chen, C.; Han, Z. D.; Chen, M. L.; Zhu, Y. Y.; Cui, R. J.; Zhang, G. H. Three-dimensional nano-porous copper and reduced graphene oxide composites as enhanced sensing platform for electrochemical detection of carbendazim. J. Electroanal. Chem. 2019, 847, 113243.

    CAS  Google Scholar 

  96. Sattayasamitsathit, S.; Thavarungkul, P.; Thammakhet, C.; Limbut, W.; Numnuam, A.; Buranachai, C.; Kanatharana, P. Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 2009, 21, 2371–2377.

    CAS  Google Scholar 

  97. Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd. 2009, 485, 583–587.

    CAS  Google Scholar 

  98. Lim, G. J. H.; Wu, Y.; Shah, B. B.; Koh, J. J.; Liu, C. K.; Zhao, D.; Cheetham, A. K.; Wang, J.; Ding, J. 3D-printing of pure metal-organic framework monoliths. ACS Mater. Lett. 2019, 1, 147–153.

    CAS  Google Scholar 

  99. Hughes, J. P.; dos Santos, P. L.; Down, M. P.; Foster, C. W.; Bonacin, J. A.; Keefe, E. M.; Rowley-Neale, S. J.; Banks, C. E. Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustainable Energy Fuels 2020, 4, 302–311.

    CAS  Google Scholar 

  100. Lawson, S.; Al-Naddaf, Q.; Krishnamurthy, A.; Amour, M. S.; Griffin, C.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. UTSA-16 growth within 3D-printed Co-kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces 2018, 10, 19076–19086.

    CAS  Google Scholar 

  101. Wei, Q. H.; Li, H. J.; Liu, G. G.; He, Y. L.; Wang, Y.; Tan, Y. E.; Wang, D.; Peng, X. B.; Yang, G. H.; Tsubaki, N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020, 11, 4098.

    CAS  Google Scholar 

  102. Li, J.; Leu, M. C.; Panat, R.; Park, J. A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing. Mater. Des. 2017, 119, 417–424.

    CAS  Google Scholar 

  103. Chen, Y. T.; Hung, F. Y.; Lui, T. S.; Hong, J. Z. Microstructures and charge-discharging properties of selective laser sintering applied to the anode of magnesium matrix. Mater. Trans. 2017, 58, 525–529.

    CAS  Google Scholar 

  104. Cloots, M.; Uggowitzer, P. J.; Wegener, K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and Doughnut profiles. Mater. Des. 2016, 89, 770–784.

    CAS  Google Scholar 

  105. Hu, Y. B.; Ning, F. D.; Cong, W. L.; Li, Y. C.; Wang, X. L.; Wang, H. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties. Ceram. Int. 2018, 44, 2752–2760.

    CAS  Google Scholar 

  106. Braun, T. M.; Schwartz, D. T. The emerging role of electrodeposition in additive manufacturing. Electrochem. Soc. Interface 2016, 25, 69–73.

    CAS  Google Scholar 

  107. Zhu, C.; Pascall, A. J.; Dudukovic, N.; Worsley, M. A.; Kuntz, J. D.; Duoss, E. B.; Spadaccini, C. M. Colloidal materials for 3D printing. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 17–42.

    Google Scholar 

  108. Foo, C. Y.; Lim, H. N.; Mahdi, M. A.; Wahid, M. H.; Huang, N. M. Three-dimensional printed electrode and its novel applications in electronic devices. Sci. Rep. 2018, 8, 7399.

    Google Scholar 

  109. Jafari, D.; Wits, W. W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review. Renew. Sustain. Energy Rev. 2018, 91, 420–442.

    Google Scholar 

  110. Ambrosi, A.; Pumera, M. Self-contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 2018, 28, 1700655.

    Google Scholar 

  111. Benedetti, T. M.; Nattestad, A.; Taylor, A. C.; Beirne, S.; Wallace, G. G. 3D printed electrodes for improved gas reactant transport for electrochemical reactions. 3D Print. Addit. Manuf. 2018, 5, 215–219.

    Google Scholar 

  112. Danaci, S.; Protasova, L.; Middelkoop, V.; Ray, N.; Jouve, M.; Bengaouer, A.; Marty, P. Scaling up of 3D printed and Ni/Al2O3 coated reactors for CO2 methanation. React. Chem. Eng. 2019, 4, 1318–1330.

    CAS  Google Scholar 

  113. Liu, X. H.; Jervis, R.; Maher, R. C.; Villar-Garcia, I. J.; Naylor-Marlow, M.; Shearing, P. R.; Ouyang, M. Z.; Cohen, L.; Brandon, N. P.; Wu, B. 3D-printed structural pseudocapacitors. Adv. Mater. Technol. 2016, 1, 1600167.

    Google Scholar 

  114. Ho, C.; Murata, K.; Steingart, D. A.; Evans, J. W.; Wright, P. K. A super ink jet printed zinc-silver 3D microbattery. J. Micromech. Microeng. 2009, 19, 094013.

    Google Scholar 

  115. Weber, J.; Wain, A. J.; Piili, H.; Matilainen, V. P.; Vuorema, A.; Attard, G. A.; Marken, F. Residual porosity of 3D-LAM-printed stainless-steel electrodes allows galvanic exchange platinisation. ChemElectroChem 2016, 3, 1020–1025.

    CAS  Google Scholar 

  116. Lölsberg, J.; Starck, O.; Stiefel, S.; Hereijgers, J.; Breugelmans, T.; Wessling, M. 3D-printed electrodes with improved mass transport properties. Chemelectrochem 2017, 4, 3309–3313.

    Google Scholar 

  117. Arie, M. A.; Shooshtari, A. H.; Ohadi, M. M. Experimental characterization of an additively manufactured heat exchanger for dry cooling of power plants. Appl. Therm. Eng. 2018, 129, 187–198.

    CAS  Google Scholar 

  118. Landsberg, P. T.; Tonge, G. Thermodynamic energy conversion efficiencies. J. Appl. Phys. 1980, 51, R1–R20.

    CAS  Google Scholar 

  119. Froment, G. F.; Bischoff, K. B. Chemical Reactor Analysis and Design, 2nd ed.; Wiley: New York, 1990.

    Google Scholar 

  120. Salmi, T.; Mikkola, J. P.; Warna, J. P. Chemical Reaction Engineering and Reactor Technology, 2nd ed.; CRC Press: Boca Raton, 2018.

    Google Scholar 

  121. Westermann, T.; Melin, T. Flow-through catalytic membrane reactors—Principles and applications. Chem. Eng. Process. Process Intensif. 2009, 48, 17–28.

    CAS  Google Scholar 

  122. Lopes, M. G. M.; Santana, H. S.; Andolphato, V. F.; Russo, F. N.; Silva Jr, J. L.; Taranto, O. P. 3D printed micro-chemical plant for biodiesel synthesis in millireactors. Energy Convers. Manag. 2019, 184, 475–487.

    CAS  Google Scholar 

  123. Costa Junior, J. M.; Naveira-Cotta, C. P.; de Moraes, D. B.; Inforçatti Neto, P.; Maia, I. A.; da Silva, J. V. L.; Alves, H.; Tiwari, M. K.; de Souza, C. G. Innovative metallic microfluidic device for intensified biodiesel production. Ind. Eng. Chem. Res. 2020, 59, 389–398.

    CAS  Google Scholar 

  124. Stuecker, J. N.; Miller, J. E.; Ferrizz, R. E.; Mudd, J. E.; Cesarano, J. Advanced support structures for enhanced catalytic activity. Ind. Eng. Chem. Res. 2004, 43, 51–55.

    CAS  Google Scholar 

  125. Essa, K.; Hassanin, H.; Attallah, M. M.; Adkins, N. J.; Musker, A. J.; Roberts, G. T.; Tenev, N.; Smith, M. Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Appl. Catal. A Gen. 2017, 542, 125–135.

    CAS  Google Scholar 

  126. Lucentini, I.; Serrano, I.; Soler, L.; Divins, N. J.; Llorca, J. Ammonia decomposition over 3D-printed CeO2 structures loaded with Ni. Appl. Catal. A Gen. 2020, 591, 117382.

    CAS  Google Scholar 

  127. Danaci, S.; Protasova, L.; Snijkers, F.; Bouwen, W.; Bengaouer, A.; Marty, P. Innovative 3D-manufacture of structured copper supports post-coated with catalytic material for CO2 methanation. Chem. Eng. Process. Process Intensif. 2018, 127, 168–177.

    CAS  Google Scholar 

  128. Papaharalabos, G.; Greenman, J.; Melhuish, C.; Ieropoulos, I. A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment. Int. J. Hydrogen Energy 2015, 40, 4263–4268.

    CAS  Google Scholar 

  129. Bian, B.; Wang, C. G.; Hu, M. J.; Yang, Z. L.; Cai, X. B.; Shi, D.; Yang, J. Application of 3D printed porous copper anode in microbial fuel cells. Front. Energy Res. 2018, 6, 50.

    Google Scholar 

  130. Calignano, F.; Tommasi, T.; Manfredi, D.; Chiolerio, A. Additive manufacturing of a microbial fuel cell—A detailed study. Sci. Rep. 2015, 5, 17373.

    CAS  Google Scholar 

  131. Dawson, R. J.; Patel, A. J.; Rennie, A. E. W.; White, S. An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks. J. Appl. Electrochem. 2015, 45, 637–645.

    CAS  Google Scholar 

  132. Gould, B. D.; Rodgers, J. A.; Schuette, M.; Bethune, K.; Louis, S.; Rocheleau, R.; Swider-Lyons, K. Performance and limitations of 3D-printed bipolar plates in fuel cells. ECS J. Solid State Sci. Technol. 2015, 4, P3063–P3068.

    CAS  Google Scholar 

  133. Hernández-Rodríguez, E. M.; Acosta-Mora, P.; Méndez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vázquez, J.; Núñez, P.; Ruiz-Morales, J. C. Prospective use of the 3D printing technology for the microstructural engineering of solid oxide fuel cell components. Bol. Soc. Esp. Ceram. Vidr. 2014, 53, 213–216.

    Google Scholar 

  134. Lomberg, M.; Boldrin, P.; Tariq, F.; Offer, G.; Wu, B.; Brandon, N. P. Additive manufacturing for solid oxide cell electrode fabrication. ECS Trans. 2015, 68, 2119–2127.

    CAS  Google Scholar 

  135. Huang, W. H.; Finnerty, C.; Sharp, R.; Wang, K.; Balili, B. High-performance 3D printed microtubular solid oxide fuel cells. Adv. Mater. Technol. 2017, 2, 1600258.

    Google Scholar 

  136. Wei, L. Y.; Zhang, J. J.; Yu, F. Y.; Zhang, W. M.; Meng, X. X.; Yang, N. T.; Liu, S. M. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. Int. J. Hydrogen Energy 2019, 44, 6182–6191.

    CAS  Google Scholar 

  137. Ambrosi, A.; Pumera, M. Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustainable Chem. Eng. 2018, 6, 16968–16975.

    CAS  Google Scholar 

  138. Su, X. R.; Li, X. W.; Ong, C. Y. A.; Herng, T. S.; Wang, Y. Q.; Peng, E.; Ding, J. Metallization of 3D printed polymers and their application as a fully functional water-splitting system. Adv. Sci. 2019, 6, 1801670.

    Google Scholar 

  139. Lee, C. Y.; Taylor, A. C.; Beirne, S.; Wallace, G. G. A 3D-printed electrochemical water splitting cell. Adv. Mater. Technol. 2019, 4, 1900433.

    CAS  Google Scholar 

  140. Bui, J. C.; Davis, J. T.; Esposito, D. V. 3D-printed electrodes for membraneless water electrolysis. Sustainable Energy Fuels 2020, 4, 213–225.

    CAS  Google Scholar 

  141. Chang, S.; Huang, X. L.; Aaron Ong, C. Y.; Zhao, L. P.; Li, L. Q.; Wang, X. S.; Ding, J. High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. J. Mater. Chem. A 2019, 7, 18338–18347.

    CAS  Google Scholar 

  142. James, S.; Contractor, R. Study on nature-inspired fractal design-based flexible counter electrodes for dye-sensitized solar cells fabricated using additive manufacturing. Sci. Rep. 2018, 8, 17032.

    Google Scholar 

  143. van Dijk, L.; Marcus, E. A. P.; Oostra, A. J.; Schropp, R. E. I.; Di Vece, M. 3D-printed concentrator arrays for external light trapping on thin film solar cells. Solar Energy Mater. Solar Cells 2015, 139, 19–26.

    CAS  Google Scholar 

  144. van Dijk, L.; Paetzold, U. W.; Blab, G. A.; Schropp, R. E. I.; Di Vece, M. 3D-printed external light trap for solar cells. Prog. Photovolt. Res. Appl. 2016, 24, 623–633.

    CAS  Google Scholar 

  145. Castedo, A.; Mendoza, E.; Angurell, I.; Llorca, J. Silicone microreactors for the photocatalytic generation of hydrogen. Catal. Today 2016, 273, 106–111.

    CAS  Google Scholar 

  146. Castedo, A.; Uriz, I.; Soler, L.; Gandia, L. M.; Llorca, J. Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures. Appl. Catal. B Environ. 2017, 203, 210–217.

    CAS  Google Scholar 

  147. Kim, F.; Kwon, B.; Eom, Y.; Lee, J. E.; Park, S.; Jo, S.; Park, S. H.; Kim, B. S.; Im, H. J.; Lee, M. H. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309.

    CAS  Google Scholar 

  148. He, M. H.; Zhao, Y.; Wang, B.; Xi, Q.; Zhou, J.; Liang, Z. Q. 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 2015, 11, 5889–5894.

    CAS  Google Scholar 

  149. Qiu, J. H.; Yan, Y. G.; Luo, T. T.; Tang, K. C.; Yao, L.; Zhang, J.; Zhang, M.; Su, X. L.; Tan, G. J.; Xie, H. Y. et al. 3D printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy Environ. Sci. 2019, 12, 3106–3117.

    CAS  Google Scholar 

  150. Su, N.; Zhu, P. F.; Pan, Y. H.; Li, F.; Li, B. 3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy 2020, 195, 116892.

    CAS  Google Scholar 

  151. Shi, J. X.; Chen, H. L.; Jia, S. H.; Wang, W. J. 3D printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. J. Manuf. Process. 2019, 37, 370–375.

    Google Scholar 

  152. Burton, M. R.; Mehraban, S.; Beynon, D.; McGettrick, J.; Watson, T.; Lavery, N. P.; Carnie, M. J. 3D printed SnSe thermoelectric generators with high figure of merit. Adv. Energy Mater. 2019, 9, 1900201.

    Google Scholar 

  153. Peng, J.; Witting, I.; Geisendorfer, N.; Wang, M.; Chang, M.; Jakus, A.; Kenel, C.; Yan, X.; Shah, R.; Snyder, G. J. et al. 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 2019, 10, 5590.

    CAS  Google Scholar 

  154. Saeidi-Javash, M.; Kuang, W. Z.; Dun, C. C.; Zhang, Y. L. 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates. Adv. Funct. Mater. 2019, 29, 1901930.

    Google Scholar 

  155. Dun, C. C.; Kuang, W. Z.; Kempf, N.; Saeidi-Javash, M.; Singh, D. J.; Zhang, Y. L. 3D printing of solution-processable 2D nanoplates and 1D nanorods for flexible thermoelectrics with ultrahigh power factor at low-medium temperatures. Adv. Sci. 2019, 6, 1901788.

    CAS  Google Scholar 

  156. Li, Y. Y.; Li, L. T.; Li, B. Direct ink writing of three-dimensional (K, Na)NbO3-based piezoelectric ceramics. Materials 2015, 8, 1729–1737.

    CAS  Google Scholar 

  157. Gao, M.; Li, L. H.; Li, W. B.; Zhou, H. H.; Song, Y. L. Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Adv. Sci. 2016, 3, 1600120.

    Google Scholar 

  158. Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W. R.; Chen, S. C.; Sirbuly, D. J. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 2014, 8, 9799–9806.

    CAS  Google Scholar 

  159. Chen, Z. Y.; Qian, X. J.; Song, X.; Jiang, Q. G.; Huang, R. J.; Yang, Y.; Li, R. Z.; Shung, K.; Chen, Y.; Zhou, Q. F. Three-dimensional printed piezoelectric array for improving acoustic field and spatial resolution in medical ultrasonic imaging. Micromachines 2019, 10, 170.

    Google Scholar 

  160. Cui, H. C.; Hensleigh, R.; Yao, D. S.; Maurya, D.; Kumar, P.; Kang, M. G.; Priya, S.; Zheng, X. Y. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 2019, 18, 234–241.

    CAS  Google Scholar 

  161. Shahzad, U. The need for renewable energy sources. Inf. Technol. Elect. Eng. 2015, 4, 16–19.

    Google Scholar 

  162. Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

    CAS  Google Scholar 

  163. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and super-capacitors begin? Science 2014, 343, 1210–1211.

    CAS  Google Scholar 

  164. Kim, B. K.; Sy, S.; Yu, A. P.; Zhang, J. J. Electrochemical supercapacitors for energy storage and conversion. In Handbook of Clean Energy Systems; Boehm, R. F.; Yang, H. X.; Yan, J. Y., Eds.; John Wiley & Sons, Inc.: Chichester, 2015; pp 1–25.

    Google Scholar 

  165. Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.

    CAS  Google Scholar 

  166. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    CAS  Google Scholar 

  167. Chen, X. L.; Paul, R.; Dai, L. M. Carbon-based supercapacitors for efficient energy storage. Nat. Sci. Rev. 2017, 4, 453–489.

    CAS  Google Scholar 

  168. Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672.

    CAS  Google Scholar 

  169. Wang, J.; Dong, S. Y.; Ding, B.; Wang, Y.; Hao, X. D.; Dou, H.; Xia, Y. Y.; Zhang, X. G. Pseudocapacitive materials for electrochemical capacitors: From rational synthesis to capacitance optimization. Nat. Sci. Rev. 2017, 4, 71–90.

    CAS  Google Scholar 

  170. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

    CAS  Google Scholar 

  171. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

    CAS  Google Scholar 

  172. Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189.

    CAS  Google Scholar 

  173. Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784.

    CAS  Google Scholar 

  174. Zhi, M. J.; Xiang, C. C.; Li, J. T.; Li, M.; Wu, N. Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88.

    CAS  Google Scholar 

  175. Jiang, H.; Ma, J.; Li, C. Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202.

    CAS  Google Scholar 

  176. Dong, L. B.; Xu, C. J.; Li, Y.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H.; Zhao, X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A 2016, 4, 4659–4685.

    CAS  Google Scholar 

  177. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

    CAS  Google Scholar 

  178. Johns, P. A.; Roberts, M. R.; Wakizaka, Y.; Sanders, J. H.; Owen, J. R. How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors. Electrochem. Commun. 2009, 11, 2089–2092.

    CAS  Google Scholar 

  179. Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135–3142.

    CAS  Google Scholar 

  180. Conway, B. E.; Pell, W. G. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J. Power Sources 2002, 105, 169–181.

    CAS  Google Scholar 

  181. Liu, T. Y.; Zhu, C.; Kou, T. Y.; Worsley, M. A.; Qian, F.; Condes, C.; Duoss, E. B.; Spadaccini, C. M.; Li, Y. Ion intercalation induced capacitance improvement for graphene-based supercapacitor electrodes. ChemNanoMat 2016, 2, 635–641.

    CAS  Google Scholar 

  182. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    CAS  Google Scholar 

  183. Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.

    CAS  Google Scholar 

  184. Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.

    CAS  Google Scholar 

  185. Zhao, C.; Wang, C. Y.; Gorkin III, R.; Beirne, S.; Shu, K. W.; Wallace, G. G. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem. Commun. 2014, 41, 20–23.

    CAS  Google Scholar 

  186. Lu, X. F.; Zhao, T. K.; Ji, X. L.; Hu, J. T.; Li, T. H.; Lin, X.; Huang, W. D. 3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor. J. Alloys Compd. 2018, 760, 78–83.

    CAS  Google Scholar 

  187. Azhari, A.; Marzbanrad, E.; Yilman, D.; Toyserkani, E.; Pope, M. A. Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon 2017, 119, 257–266.

    CAS  Google Scholar 

  188. Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.

    Google Scholar 

  189. Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.

    CAS  Google Scholar 

  190. Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.

    Google Scholar 

  191. Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

    CAS  Google Scholar 

  192. Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876.

    Google Scholar 

  193. Park, S. H.; Kaur, M.; Yun, D.; Kim, W. S. Hierarchically designed electron paths in 3D printed energy storage devices. Langmuir 2018, 34, 10897–10904.

    CAS  Google Scholar 

  194. Song, J.; Chen, Y. J.; Cao, K.; Lu, Y.; Xin, J. H.; Tao, X. M. Fully controllable design and fabrication of three-dimensional lattice supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 39839–39850.

    CAS  Google Scholar 

  195. Xue, J. Z.; Gao, L. B.; Hu, X. K.; Cao, K.; Zhou, W. Z.; Wang, W. D.; Lu, Y. Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 2019, 11, 46.

    CAS  Google Scholar 

  196. Conway, B. E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 1991, 138, 1539–1548.

    CAS  Google Scholar 

  197. Kumar, Y.; Malackowski, D. Battery charger especially useful with sterilizable, rechargeable battery packs. U.S. Patent 6018227, January 25, 2000.

  198. Goodenough, J. B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources 2011, 196, 6688–6694.

    CAS  Google Scholar 

  199. Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. N.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.

    CAS  Google Scholar 

  200. Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.

    Google Scholar 

  201. Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 2018, 30, 1703027.

    Google Scholar 

  202. Saleh, M. S.; Li, J.; Park, J.; Panat, R. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 2018, 23, 70–78.

    CAS  Google Scholar 

  203. Ragones, H.; Menkin, S.; Kamir, Y.; Gladkikh, A.; Mukra, T.; Kosa, G.; Golodnitsky, D. Towards smart free form-factor 3D printable batteries. Sustain Energy Fuels 2018, 2, 1542–1549.

    CAS  Google Scholar 

  204. Reyes, C.; Somogyi, R.; Niu, S. B.; Cruz, M. A.; Yang, F. C.; Catenacci, M. J.; Rhodes, C. P.; Wiley, B. J. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl. Energy Mater. 2018, 1, 5268–5279.

    CAS  Google Scholar 

  205. Cheng, M.; Jiang, Y. Z.; Yao, W. T.; Yuan, Y. F.; Deivanayagam, R.; Foroozan, T.; Huang, Z. N.; Song, B. A.; Rojaee, R.; Shokuhfar, T. et al. Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Adv. Mater. 2018, 30, 1800615.

    Google Scholar 

  206. Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J. et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 2018, 11, 185–201.

    CAS  Google Scholar 

  207. McOwen, D. W.; Xu, S. M.; Gong, Y. H.; Wen, Y.; Godbey, G. L.; Gritton, J. E.; Hamann, T. R.; Dai, J. Q.; Hitz, G. T.; Hu, L. B. et al. 3D-printing electrolytes for solid-state batteries. Adv. Mater. 2018, 30, 1707132.

    Google Scholar 

  208. Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 2017, 7, 1602920.

    Google Scholar 

  209. Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L. et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.

    Google Scholar 

  210. Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J. et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 2020, 24, 336–342.

    Google Scholar 

  211. Lyu, Z.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.

    Google Scholar 

  212. Lin, X. T.; Wang, J. W.; Gao, X.; Wang, S.; Sun, Q.; Luo, J.; Zhao, C. T.; Zhao, Y. F.; Yang, X. F.; Wang, C. H. et al. 3D printing of free-standing “O2 breathable” air electrodes for high-capacity and long-life Na-O2 batteries. Chem. Mater. 2020, 32, 3018–3027.

    CAS  Google Scholar 

  213. Zhang, J.; Li, X. L.; Fan, S.; Huang, S. Z.; Yan, D.; Liu, L.; Valdivia y Alvarado, P.; Yang, H. Y. 3D-printed functional electrodes towards Zn-air batteries. Mater. Today Energy 2020, 16, 100407.

    Google Scholar 

  214. Cai, J. S.; Fan, Z. D.; Jin, J.; Shi, Z. X.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity. Nano Energy 2020, 75, 104970.

    CAS  Google Scholar 

  215. Shen, C. L.; Wang, T.; Xu, X.; Tian, X. C. 3D printed cellular cathodes with hierarchical pores and high mass loading for Li-SeS2 battery. Electrochim. Acta 2020, 349, 136331.

    CAS  Google Scholar 

  216. Brown, E.; Yan, P. L.; Tekik, H.; Elangovan, A.; Wang, J.; Lin, D.; Li, J. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater. Des. 2019, 170, 107689.

    CAS  Google Scholar 

  217. Qiao, Y.; Liu, Y.; Chen, C. J.; Xie, H.; Yao, Y. G.; He, S. M.; Ping, W. W.; Liu, B. Y.; Hu, L. B. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.

    Google Scholar 

  218. Moon, H.; Miljkovic, N.; King, W. P. High power density thermal energy storage using additively manufactured heat exchangers and phase change material. Int. J. Heat Mass Transf. 2020, 153, 119591.

    CAS  Google Scholar 

  219. Kreider, M. C.; Sefa, M.; Fedchak, J. A.; Scherschligt, J.; Bible, M.; Natarajan, B.; Klimov, N. N.; Miller, A. E.; Ahmed, Z.; Hartings, M. R. Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 2018, 29, 867–873.

    CAS  Google Scholar 

Download references

Acknowledgements

S. M., Z. Q., C. Z., and W. C. drafted the initial manuscript. J. R., S. Y. P., L. L., S. B. Z., S. F., F. Y. K., and Y. F. L. helped analysed literature in the field of metal electrocatalysis. All authors contributed to the discussion and manuscript writing. W. C. acknowledges the support from UMass Amherst Faculty Start-up Fund. This work was done under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344, through LDRD awards 19-SI-005. IM release number: LLNL-JRNL-809180.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhu or Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooraj, S., Qi, Z., Zhu, C. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 14, 2105–2132 (2021). https://doi.org/10.1007/s12274-020-3230-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3230-x

Keywords

Navigation