Skip to main content
Log in

Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational design and development of cost-effective, highly active and durable bifunctional electrocatalysts towards oxygen redox reactions is of critical importance but great challenge for the broad implementation of next-generation metal-air batteries for electric transportation. Herein, a high-performance electrocatalyst of cobalt and zinc sulfides nanocrystals embedded within nitrogen and sulfur co-doped porous carbon is successfully designed and derived from bimetallic metal-organic frameworks of cobalt and zinc containing zeolitic imidazolate frameworks. The unique nanostructure contains abundant electrocatalytic active sites of sulfides nanocrystals and nitrogen and sulfur dopants which can be fast accessed through highly porous structure originate from both zinc vaporization and sulfurization processes. Such bifunctional electrocatalyst delivers a superior half-wave potential of 0.86 V towards oxygen reduction reaction and overpotential of 350 mV towards oxygen evolution reaction, as well as excellent durability owing to the highly stable carbon framework with a great graphitized portion. The performance boosting is mainly attributed to the unique nanostructure where bimetallic cobalt and zinc provide synergistic effect during both synthesis and catalysis processes. The design and realization pave a new way of development and understanding of bifunctional electrocatalyst towards clean electrochemical energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elizabeth, I.; Nair, A. K.; Singh, B. P.; Gopukumar, S. Multifunctional Ni-Nio-CNT composite as high performing free standing anode for Li ion batteries and advanced electro catalyst for oxygen evolution reaction. Electrochim. Acta 2017, 230, 98–105.

    CAS  Google Scholar 

  2. Lee, S. H.; Jo, Y. R.; Noh, Y.; Kim, B. J.; Kim, W. B. Fabrication of hierarchically branched SnO2 nanowires by two-step deposition method and their applications to electrocatalyst support and Li ion electrode. J. Power Sources 2017, 367, 1–7.

    CAS  Google Scholar 

  3. Yu, W. T.; Shang, W. X.; Tan, P.; Chen, B.; Wu, Z.; Xu, H. R.; Shao, Z. P.; Liu, M. L.; Ni, M. Toward a new generation of low cost, efficient, and durable metal-air flow batteries. J. Mater. Chem. A 2019, 7, 26744–26768.

    CAS  Google Scholar 

  4. Yao, R. Q.; Shi, H.; Wan, W. B.; Wen, Z.; Lang, X. Y.; Jiang, Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. 2020, 32, 1907214.

    CAS  Google Scholar 

  5. Gebremariam, T. T.; Chen, F. Y.; Jin, Y. C.; Wang, Q.; Wang, J. L.; Wang, J. P. Bimetallic NiCo/CNF encapsulated in a N-doped carbon shell as an electrocatalyst for Zn-air batteries and water splitting. Catal. Sci. Technol. 2019, 9, 2532–2542.

    CAS  Google Scholar 

  6. Song, S. D.; Li, W. J.; Deng, Y. P.; Ruan, Y. L.; Zhang, Y. N.; Qin, X. H.; Chen, Z. W. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy 2020, 67, 104208.

    CAS  Google Scholar 

  7. Shi, F.; Zhu, X. F.; Yang, W. S. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries. Chin. J. Catal. 2020, 41, 390–403.

    CAS  Google Scholar 

  8. Kim, M.; Ju, H.; Kim, J. Dihydrogen phosphate ion functionalized nanocrystalline thallium ruthenium oxide pyrochlore as a bifunctional electrocatalyst for aqueous Na-air batteries. Appl. Catal. B Environ. 2019, 245, 29–39.

    CAS  Google Scholar 

  9. Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/ reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426–1440.

    CAS  Google Scholar 

  10. Wang, X. X.; Sunarso, J.; Lu, Q.; Zhou, Z. L.; Dai, J.; Guan, D. Q.; Zhou, W.; Shao, Z. P. High-performance platinum-perovskite composite bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Adv. Energy Mater. 2020, 10, 1903271.

    CAS  Google Scholar 

  11. Xiao, X.; Li, X. H.; Wang, Z. X.; Yan, G. C.; Guo, H. J.; Hu, Q. Y.; Li, L. J.; Liu, Y.; Wang, J. X. Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Appl. Catal. B Environ. 2020, 265, 118603.

    Google Scholar 

  12. Guo, J. R.; Yu, Y.; Ma, J. C.; Zhang, T. T.; Xing, S. X. Facile route to achieve N,S-codoped carbon as bifunctional electrocatalyst for oxygen reduction and evolution reactions. J. Alloys Compd. 2020, 821, 153484.

    CAS  Google Scholar 

  13. Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

    CAS  Google Scholar 

  14. Parra-Puerto, A.; Ng, K. L.; Fahy, K.; Goode, A. E.; Ryan, M. P.; Kucernak, A. Supported transition metal phosphides: Activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 2019, 9, 11515–11529.

    CAS  Google Scholar 

  15. Chen, D.; Zhu, J. W.; Mu, X. Q.; Cheng, R. L.; Li, W. Q.; Liu, S. L.; Pu, Z. H.; Lin, C.; Mu, S. C. Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and Zn-air batteries. Appl. Catal. B Environ. 2020, 268, 118729.

    CAS  Google Scholar 

  16. He, X.; Luan, S. Z.; Wang, L.; Wang, R. Y.; Du, P.; Xu, Y. Y.; Yang, H. J.; Wang, Y. G.; Huang, K.; Lei, M. Facile loading mesoporous Co3O4 on nitrogen doped carbon matrix as an enhanced oxygen electrode catalyst. Mater. Lett. 2019, 244, 78–82.

    CAS  Google Scholar 

  17. Li, G.; Wang, X. L.; Fu, J.; Li, J. D.; Park, M. G.; Zhang, Y. N.; Lui, G.; Chen, Z. W. Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries. Angew. Chem., Int. Ed. 2016, 55, 4977–4982.

    CAS  Google Scholar 

  18. Xia, S. B.; Yu, S. W.; Yao, L. F.; Li, F. S.; Li, X.; Cheng, F. X.; Shen, X.; Sun, C. K.; Guo, H.; Liu, J. J. Robust hexagonal nut-shaped titanium (IV) MOF with porous structure for ultra-high performance lithium storage. Electrochim. Acta 2019, 296, 746–754.

    CAS  Google Scholar 

  19. Jayaramulu, K.; Dubal, D. P.; Schneemann, A.; Ranc, V.; Perez- Reyes, C.; Stráská, J.; Kment, Š.; Otyepka, M.; Fischer, R. A.; Zboril, R. Shape-assisted 2D MOF/graphene derived hybrids as exceptional lithium-ion battery electrodes. Adv. Funct. Mater. 2019, 29, 1902539.

    Google Scholar 

  20. Yu, S. Z.; Luo, S. H.; Zhan, Y.; Huang, H. B.; Wang, Q.; Zhang, Y. H.; Liu, Y. G.; Hao, A. I. Metal-organic framework-derived cobalt nanoparticle space confined in nitrogen-doped carbon polyhedra networks as high-performance bifunctional electrocatalyst for rechargeable Li-O2 batteries. J. Power Sources 2020, 453, 227899.

    CAS  Google Scholar 

  21. Chen, D.; Yu, J. H.; Cui, Z. X.; Zhang, Q.; Chen, X.; Sui, J.; Dong, H. Z.; Yu, L. Y.; Dong, L. F. Hierarchical architecture derived from two-dimensional zeolitic imidazolate frameworks as an efficient metal-based bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Electrochim. Acta 2020, 331, 135394.

    CAS  Google Scholar 

  22. Guan, Y.; Li, Y. L.; Luo, S.; Ren, X. Z.; Deng, L. B.; Sun, L. N.; Mi, H. W.; Zhang, P. X.; Liu, J. H. Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 256, 117871.

    CAS  Google Scholar 

  23. Li, Z. Y.; Liu, H. D.; Huang, J. M.; Zhang, L. MOF-derived a-MnSe/C composites as anode materials for Li-ion batteries. Ceram. Int. 2019, 45, 23765–23771.

    CAS  Google Scholar 

  24. Duan, J. L.; Zou, Y. L.; Li, Z. Y.; Long, B. Preparation of MOF-derived NiCoP nanocages as anodes for lithium ion batteries. Powder Technol. 2019, 354, 834–841.

    CAS  Google Scholar 

  25. Wang, C. C.; Hung, K. Y.; Ko, T. E.; Hosseini, S.; Li, Y. Y. Carbon-nanotube-grafted and nano-Co3O4-doped porous carbon derived from metal-organic framework as an excellent bifunctional catalyst for zinc-air battery. J. Power Sources 2020, 452, 227841.

    CAS  Google Scholar 

  26. Chen, D.; Chen, X.; Cui, Z. X.; Li, G. F.; Han, B.; Zhang, Q.; Sui, J.; Dong, H. Z.; Yu, J. H.; Yu, L. Y. et al. Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 2020, 399, 125718.

    CAS  Google Scholar 

  27. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

    Google Scholar 

  28. Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048.

    Google Scholar 

  29. Guo, J. X.; Gao, M.; Nie, J.; Yin, F. X.; Ma, G. P. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. J. Colloid Interface Sci. 2019, 544, 112–120.

    CAS  Google Scholar 

  30. Khalid, M.; Honorato, A. M. B.; Ticianelli, E. A.; Varela, H. Uniformly self-decorated Co3O4 nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal-organic framework hybrid as an oxygen evolution electrocatalyst. J. Mater. Chem. A 2018, 6, 12106–12114.

    CAS  Google Scholar 

  31. Hang, C.; Zhang, J.; Zhu, J.; Li, W.; Kou, Z.; Huang, Y. In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1703539.

    Google Scholar 

  32. Wei, J.; Hu, Y. X.; Liang, Y.; Kong, B.; Zhang, J.; Song, J. C.; Bao, Q. L.; Simon, G. P.; Jiang, S. P.; Wang, H. T. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 2015, 25, 5768–5777.

    CAS  Google Scholar 

  33. Chen, Z. L.; Liu, M.; Wu, R. B. Strongly coupling of Co9S8/Zn-Co-S heterostructures rooted in carbon nanocages towards efficient oxygen evolution reaction. J. Catal. 2018, 361, 322–330.

    CAS  Google Scholar 

  34. Guan, C.; Xiao, W.; Wu, H. J.; Liu, X. M.; Zang, W. J.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73–80.

    Google Scholar 

  35. Zeng, K.; Su, J. M.; Cao, X. C.; Zheng, X. J.; Li, X. W.; Tian, J. H.; Jin, C.; Yang, R. Z. B, N Co-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. J. Alloys Compd. 2020, 824, 153908.

    CAS  Google Scholar 

  36. Shao, Q.; Liu, J. Q.; Wu, Q.; Li, Q.; Wang, H. G.; Li, Y. H.; Duan, Q. In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-air battery. Nano-Micro Lett. 2019, 11, 4.

    CAS  Google Scholar 

  37. Li, K. L.; Li, D. H.; Zhu, L. K.; Gao, Z. Z.; Fang, Q. R.; Xue, M.; Qiu, S. L.; Yao, X. D. Bimetallic ZIF derived Co nanoparticle anchored N-doped porous carbons for an efficient oxygen reduction reaction. Inorg. Chem. Front. 2020, 7, 946–952.

    CAS  Google Scholar 

  38. Jin, H. H.; Zhou, H.; Li, W. Q.; Wang, Z. H.; Yang, J. L.; Xiong, Y. L.; He, D. P.; Chen, L.; Mu, S. C. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2018, 6, 20093–20099.

    CAS  Google Scholar 

  39. Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

    Google Scholar 

  40. Chen, B. H.; He, X. B.; Yin, F. X.; Wang, H.; Liu, D. J.; Shi, R. X.; Chen, J. N.; Yin, H. W. MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795.

    Google Scholar 

  41. He, W. D.; Wang, C. G.; Li, H. Q.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 2017, 7, 1700983.

    Google Scholar 

  42. Yang, Y.; Li, S.; Huang, W.; Shangguan, H. H.; Engelbrekt, C.; Duan, S. W.; Ci, L. J.; Si, P. Effective synthetic strategy for Zn0.76Co0.24S encapsulated in stabilized N-doped carbon nanoarchitecture towards ultra-long-life hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 14670–14680.

    CAS  Google Scholar 

  43. Yin, X. J.; Sun, W. W.; Lv, L. P.; Wang, Y. Boosting lithium-ion storage performance by synergistically coupling Zn0.76Co0.24S with N-/S-doped carbon and carbon nanofiber. Chem. Eng. J. 2018, 346, 376–387.

    CAS  Google Scholar 

  44. Zhou, Y.; Leng, Y.; Zhou, W.; Huang, J.; Zhao, M.; Zhan, J.; Feng, C.; Tang, Z.; Chen, S.; Liu, H. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 2015, 16, 357–366.

    CAS  Google Scholar 

  45. Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

    Google Scholar 

  46. Wang, X.; Ma, Z. J.; Chai, L. L.; Xu, L. Q.; Zhu, Z. Y.; Hu, Y.; Qian, J. J.; Huang, S. M. MOF derived N-doped carbon coated CoP particle/ carbon nanotube composite for efficient oxygen evolution reaction. Carbon 2019, 141, 643–651.

    CAS  Google Scholar 

  47. Zhang, S. L.; Guan, B. Y.; Lou, X. W. D. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 2019, 15, 1805324.

    Google Scholar 

  48. Yang, Y.; Huang, W.; Li, S.; Ci, L. J.; Si, P. C. Surfactant-dependent flower- and grass-like Zn0.76Co0.24S/Co3S4 for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 22830–22839.

    CAS  Google Scholar 

  49. Zhao, Y. H.; Dong, H. X.; He, X. Y.; Yu, J.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Wang, J. Design of 2D mesoporous Zn/Co-based metal-organic frameworks as a flexible electrode for energy storage and conversion. J. Power Sources 2019, 438, 227057.

    CAS  Google Scholar 

  50. Cao, Q. C.; Ding, X. B.; Li, F.; Qin, Y. H.; Wang, C. Zinc, sulfur and nitrogen co-doped carbon from sodium chloride/zinc chloride-assisted pyrolysis of thiourea/sucrose for highly efficient oxygen reduction reaction in both acidic and alkaline media. J. Colloid Interface Sci. 2020, 576, 139–146.

    CAS  Google Scholar 

  51. Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal. B Environ. 2019, 254, 186–193.

    CAS  Google Scholar 

  52. Yang, L. F.; Zhang, L.; Xu, G. C.; Ma, X.; Wang, W. W.; Song, H. J.; Jia, D. Z. Metal-organic-framework-derived hollow CoSx@MoS2 microcubes as superior bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. ACS Sustainable Chem. Eng. 2018, 6, 12961–12968.

    CAS  Google Scholar 

  53. Liu, Y. S.; Shen, H. B.; Jiang, H.; Li, W. Z.; Li, J.; Li, Y. M.; Guo, Y. ZIF-derived graphene coated/Co9S8 nanoparticles embedded in nitrogen doped porous carbon polyhedrons as advanced catalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 2017, 42, 12978–12988.

    CAS  Google Scholar 

  54. Wang, J. L.; Liu, H.; Liu, Y.; Wang, W. H.; Sun, Q.; Wang, X. B.; Zhao, X. Y.; Hu, H.; Wu, M. B. Sulfur bridges between Co9S8 nanoparticles and carbon nanotubes enabling robust oxygen electrocatalysis. Carbon 2019, 144, 259–268.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), through the Discovery Grant Program (RGPIN-2018-06725) and the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651), and by the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488). L. C., Z. C. and X. L. W. also acknowledge support from Concordia University, the University of Alberta, and Future Energy Systems (FES). All authors thank Prof. Zhibin Ye for assistance in electrochemical measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Chen or Xiaolei Wang.

Electronic Supplementary Material

12274_2020_3212_MOESM1_ESM.pdf

Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, Z., Liu, X. et al. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 14, 1533–1540 (2021). https://doi.org/10.1007/s12274-020-3212-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3212-z

Keywords

Navigation