Skip to main content
Log in

Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fully printed perovskite solar cells (PSCs) were fabricated in air with all constituent layers, except for electrodes, deposited by the blade coating technique. The PSCs incorporated, for the first time, a nanometer-thick printed bathocuproine (BCP) hole blocking buffer using blade coating and deposited at relative humidity up to 50%. The PSCs with a p-i-n structure (glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbI3/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/BCP/Ag) delivered a maximum power conversion efficiency (PCE) of 14.9% on an active area of 0.5 cm2 when measured under standard test conditions. The PSCs with a blade coated BCP delivered performance of 10% and 63% higher (in relative terms) than those incorporating a spin coated BCP or without any BCP film, respectively. The atomic force microscopy (AFM) showed that blade coated films were more homogeneous and acted also as a surface planarizer leading to a reduction of roughness which improved BCP/Ag interface lowering charge recombination. The demonstration of 15% efficient devices with all constituent layers, including nanometer-thick BCP (∼ 10 nm), deposited by blade coating in air, demonstrates a route for industrialization of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Renewable Enery Laboratory. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-erticiency.html (accessed Aug 31, 2020).

  2. Saliba, M.; Correa-Baena, J. P.; Wolff, C. M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures. Chem. Mater. 2018, 30, 4193–4201.

    Article  CAS  Google Scholar 

  3. Burgués-Ceballos, I.; Stella, M.; Lacharmoise, P.; Martínez-Ferrero, E. Towards industrialization of polymer solar cells: Material processing for upscaling. J. Mater. Chem. A 2014, 2, 17711–17722.

    Article  CAS  Google Scholar 

  4. Huang, F.; Li, M. J.; Sffalovic, P.; Cao, G. Z.; Tian, J. J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 2019, 12, 518–549.

    Article  CAS  Google Scholar 

  5. Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.

    Article  CAS  Google Scholar 

  6. Yang, M. J.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y. F.; Berry, J. J.; van Hest, M. F. A. M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2017, 2, 17038.

    Article  CAS  Google Scholar 

  7. Dou, B. J.; Whitaker, J. B.; Bruening, K.; Moore, D. T.; Wheeler, L. M.; Ryter, J.; Breslin, N. J.; Berry, J. J.; Garner, S. M.; Barnes, F. S. et al. Roll-to-roll printing of perovskite solar cells. ACS Energy Lett. 2018, 3, 2558–2565.

    Article  CAS  Google Scholar 

  8. Galagan, Y.; Di Giacomo, F.; Gorter, H.; Kirchner, G.; de Vries, I.; Andriessen, R.; Groen, P. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 2018, 8, 1801935.

    Article  CAS  Google Scholar 

  9. Whitaker, J. B.; Kim, D. H.; Larson, B. W.; Zhang, F.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K. Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2018, 2, 2442–2449.

    Article  CAS  Google Scholar 

  10. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

    Article  CAS  Google Scholar 

  11. Uratani, H.; Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: A first-principles study. J. Phys. Chem. Lett. 2017, 8, 742–746.

    Article  CAS  Google Scholar 

  12. Seo, Y. H.; Kim, E. C.; Cho, S. P.; Kim, S. S.; Na, S. I. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 2017, 9, 598–604.

    Article  Google Scholar 

  13. Li, J. B.; Munir, R.; Fan, Y. Y.; Niu, T. Q.; Liu, Y. C.; Zhong, Y. F.; Yang, Z.; Tian, Y. S.; Liu, B.; Sun, J. et al. Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2018, 2, 1313–1330.

    Article  CAS  Google Scholar 

  14. Yang, Z. B.; Chueh, C. C.; Zuo, F.; Kim, J. H.; Liang, P. W.; Jen, A. K. Y. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 2015, 5, 1500328.

    Article  CAS  Google Scholar 

  15. Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B. J.; Verhees, W. J. H.; Dorenkamper, M. S.; Veenstra, S. C.; Qiu, W. M.; Gehlhaar, R.; Merckx, T. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 2018, 181, 53–59.

    Article  CAS  Google Scholar 

  16. Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; Hörantner, M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.; Alexander-Webber, J. A.; Abate, A. et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142.

    Article  CAS  Google Scholar 

  17. Li, C.; Guo, Q.; Qiao, W. Y.; Chen, Q.; Ma, S.; Pan, X.; Wang, F. Z.; Yao, J. X.; Zhang, C. F.; Xiao, M. et al. Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Org. Electron. 2016, 33, 194–200.

    Article  CAS  Google Scholar 

  18. Aldibaja, F. K.; Badia, L.; Mas-Marzá, E.; Sánchez, R. S.; Barea, E. M.; Mora-Sero, I. Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A 2015, 3, 9194–9200.

    Article  CAS  Google Scholar 

  19. Qiu, W.; Merckx, T.; Jaysankar, M.; Masse de la Huerta, C.; Rakocevic, L.; Zhang, W.; Paetzold, U. W.; Gehlhaar, R.; Froyen, L.; Poortmans, J. et al. Pinhole-free perovskite films for efficient solar modules. Energy Environ. Sci. 2016, 9, 484–489.

    Article  CAS  Google Scholar 

  20. Kong, W. G.; Wang, G. L.; Zheng, J. M.; Hu, H.; Chen, H.; Li, Y. L.; Hu, M. M.; Zhou, X. Y.; Liu, C.; Chandrashekar, B. N. et al. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate. Sol. RRL 2018, 2, 1700214.

    Article  CAS  Google Scholar 

  21. Kim, J. E.; Jung, Y. S.; Heo, Y. J.; Hwang, K.; Qin, T. S.; Kim, D. Y.; Vak, D. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 2018, 179, 80–86.

    Article  CAS  Google Scholar 

  22. Cotella, G.; Baker, J.; Worsley, D.; De Rossi, F.; Pleydell-Pearce, C.; Carnie, M.; Watson, T. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362–369.

    Article  CAS  Google Scholar 

  23. Kohlstädt, M.; Yakoob, M. A.; Würfel, U. A matter of drying: Blade-coating of lead acetate sourced planar inverted perovskite solar cells on active areas >1 cm2. Phys. Status Solidi 2018, 215, 1800419.

    Article  CAS  Google Scholar 

  24. Matteocci, F.; Razza, S.; Di Giacomo, F.; Casaluci, S.; Mincuzzi, G.; Brown, T. M.; D’Epifanio, A.; Licoccia, S.; Di Carlo, A. Solid-state solar modules based on mesoscopic organometal halide perovskite: A route towards the up-scaling process. Phys. Chem. Chem. Phys. 2014, 16, 3918–3923.

    Article  CAS  Google Scholar 

  25. Zhao, Q.; Li, G. R.; Song, J.; Zhao, Y. L.; Qiang, Y. H.; Gao, X. P. Improving the photovoltaic performance of perovskite solar cells with acetate. Sci. Rep. 2016, 6, 38670.

    Article  CAS  Google Scholar 

  26. Ye, J. J.; Zhang, X. H.; Zhu, L. Z.; Zheng, H. Y.; Liu, G. Z.; Wang, H. X.; Hayat, T.; Pan, X.; Dai, S. Y. Enhanced morphology and stability of high-performance perovskite solar cells with ultra-smooth surface and high fill factor via crystal growth engineering. Sustain. Energy Fuels 2017, 1, 907–914.

    Article  CAS  Google Scholar 

  27. Liu, T. H.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. H. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457.

    Article  CAS  Google Scholar 

  28. Chen, C. L.; Zhang, S. S.; Wu, S. H.; Zhang, W. J.; Zhu, H. M.; Xiong, Z. Z.; Zhang, Y. J.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826.

    Article  CAS  Google Scholar 

  29. Dagar, J.; Castro-Hermosa, S.; Lucarelli, G.; Zampetti, A.; Cacialli, F.; Brown, T. M. Low-temperature solution-processed thin SnO2/Al2O3 double electron transport layers toward 20% efficient perovskite solar cells. IEEE J. Photovolt. 2019, 9, 1309–1315.

    Article  Google Scholar 

  30. Dagar, J.; Castro-Hermosa, S.; Lucarelli, G.; Cacialli, F.; Brown, T. M. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy 2018, 49, 290–299.

    Article  CAS  Google Scholar 

  31. Wu, W. Q.; Rudd, P. N.; Wang, Q.; Yang, Z. B.; Huang, J. S. Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 2020, 32, 2000995.

    Article  CAS  Google Scholar 

  32. Wu, W. Q.; Rudd, P. N.; Ni, Z. Y.; Van Brackle, C. H.; Wei, H. T.; Wang, Q.; Ecker, B. R.; Gao, Y. L.; Huang, J. S. Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 3989–3996.

    Article  CAS  Google Scholar 

  33. Stenta, C.; Montero-Rama, M. P.; Viterisi, A.; Cambarau, W.; Palomares, E.; Marsal, L. F. Solution processed bathocuproine for organic solar cells. IEEE Trans. Nanotechnol. 2018, 17, 128–132.

    Article  CAS  Google Scholar 

  34. Cui, J.; Li, P. F.; Chen, Z. F.; Cao, K.; Li, D.; Han, J. B.; Shen, Y.; Peng, M. Y.; Fu, Y. Q.; Wang, M. K. Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Appl. Phys. Lett. 2016, 109, 171103.

    Article  CAS  Google Scholar 

  35. Wang, Y. X.; Zhang, J. H.; Wu, Y. H.; Yi, Z. C.; Chi, F.; Wang, H. H.; Li, W. S.; Zhang, Y.; Zhang, X. W.; Liu, L. M. Solution-processed bathocuproine cathode buffer layer towards efficient planar heterojunction perovskite solar cells. Semicond. Sci. Technol. 2019, 34, 075023.

    Article  CAS  Google Scholar 

  36. Yuan, D. X.; Yuan, X. D.; Xu, Q. Y.; Xu, M. F.; Shi, X. B.; Wang, Z. K.; Liao, L. S. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. Phys. Chem. Chem. Phys. 2015, 17, 26653–26658.

    Article  CAS  Google Scholar 

  37. He, M.; Li, B.; Cui, X.; Jiang, B. B.; He, Y. J.; Chen, Y. H.; O’Neil, D.; Szymanski, P.; EI-Sayed, M. A.; Huang, J. S. et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 2017, 8, 16045.

    Article  CAS  Google Scholar 

  38. Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

    Article  CAS  Google Scholar 

  39. Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.

    Article  CAS  Google Scholar 

  40. Yan, Y. F.; Yin, W. J.; Shi, T. T.; Meng, W. W.; Feng, C. B. Defect physics of CH3NH3PbX3 (X = I, Br, Cl) perovskites. In Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures; Park, N. G.; Grätzel, M.; Miyasaka, T., Eds.; Springer International Publishing: Cham, 2016; pp 79–105.

    Chapter  Google Scholar 

  41. Schlipf, J.; Hu, Y. H.; Pratap, S.; Bießmann, L.; Hohn, N.; Porcar, L.; Bein, T.; Docampo, P.; Müller-Buschbaum, P. Shedding light on the moisture stability of 3D/2D hybrid perovskite heterojunction thin films. ACS Appl. Energy Mater. 2019, 2, 1011–1018.

    Article  CAS  Google Scholar 

  42. Yang, J. A.; Xiao, A. D.; Xie, L. S.; Liao, K. J.; Deng, X. Y.; Li, C. B.; Wang, A. L.; Xiang, Y.; Li, T. S.; Hao, F. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta 2020, 338, 135697.

    Article  CAS  Google Scholar 

  43. Ren, X. D.; Yang, Z.; Yang, D.; Zhang, X.; Cui, D.; Liu, Y. C.; Wei, Q. B.; Fan, H. B.; Liu, S. Z. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale 2016, 8, 3816–3822.

    Article  CAS  Google Scholar 

  44. Liang, Z. R.; Zhang, S. H.; Xu, X. Q.; Wang, N.; Wang, J. X.; Wang, X.; Bi, Z. N.; Xu, G.; Yuan, N. Y.; Ding, J. N. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 2015, 5, 60562–60569.

    Article  CAS  Google Scholar 

  45. Yun, J. Y.; Jun, J.; Yu, H.; Lee, K.; Ryu, J.; Lee, J.; Jang, J. Highly efficient perovskite solar cells incorporating NiO nanotubes: Increased grain size and enhanced charge extraction. J. Mater. Chem. A 2017, 5, 21750–21756.

    Article  CAS  Google Scholar 

  46. Lu, G.; Zhu, W. D.; He, F. Q.; Chen, D. Z.; Zhang, C. F.; Hao, Y. Enhanced sensitivity of grain sizes to precursor stoichiometry enables high-quality CH3NH3PbI3 films for efficient perovskite solar cells. Mater. Lett. 2019, 250, 88–91.

    Article  CAS  Google Scholar 

  47. Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279–284.

    Article  CAS  Google Scholar 

  48. Pistor, P.; Ruiz, A.; Cabot, A.; Izquierdo-Roca, V. Advanced Raman spectroscopy of methylammonium lead iodide: Development of a non-destructive characterisation methodology. Sci. Rep. 2016, 6, 35973.

    Article  CAS  Google Scholar 

  49. Xie, Y.; Shao, F.; Wang, Y. M.; Xu, T.; Wang, D. L.; Huang, F. Q. Enhanced performance of perovskite CH3NH3PbI3 solar cell by using CH3NH3I as additive in sequential deposition. ACS Appl. Mater. Interfaces 2015, 7, 12937–12942.

    Article  CAS  Google Scholar 

  50. Kong, W. G.; Rahimi-Iman, A.; Bi, G.; Dai, X. S.; Wu, H. Z. Oxygen intercalation induced by photocatalysis on the surface of hybrid lead halide perovskites. J. Phys. Chem. C 2016, 120, 7606–7611.

    Article  CAS  Google Scholar 

  51. Yerramilli, A. S.; Chen, Y. Q.; Sanni, D.; Asare, J.; Theodore, N. D.; Alford, T. L. Impact of excess lead on the stability and photo-induced degradation of lead halide perovskite solar cells. Org. Electron. 2018, 59, 107–112.

    Article  CAS  Google Scholar 

  52. Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641.

    Article  CAS  Google Scholar 

  53. Sun, X. N.; Gobbi, M.; Bedoya-Pinto, A.; Txoperena, O.; Golmar, F.; Llopis, R.; Chuvilin, A.; Casanova, F.; Hueso, L. E. Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nat. Commun. 2013, 4, 2794.

    Article  CAS  Google Scholar 

  54. Chauhan, A. K.; Gusain, A.; Jha, P.; Veerender, P.; Koiry, S. P.; Sridevi, C.; Aswal, D. K.; Gupta, S. K.; Taguchi, D.; Manaka, T. et al. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing. AIP Adv. 2016, 6, 095012.

    Article  CAS  Google Scholar 

  55. Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.

    Article  CAS  Google Scholar 

  56. Chen, B. T. Investigation of the solvent-evaporation effect on spin coating of thin films. Polym. Eng. Sci. 1983, 23, 399–403.

    Article  CAS  Google Scholar 

  57. Jun, C. H.; Ohisa, S.; Pu, Y. J.; Chiba, T.; Kido, J. Comparison of spin and blade coating methods in solution-process for organic light-emitting devices. J. Photopolym. Sci. Technol. 2015, 28, 343–347.

    Article  CAS  Google Scholar 

  58. Park, N. G.; Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5, 333–350.

    Article  CAS  Google Scholar 

  59. Chen, B.; Yang, M. J.; Priya, S.; Zhu, K. Origin of J–V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 905–917.

    Article  CAS  Google Scholar 

  60. Lin, C. T.; Pont, S.; Kim, J.; Du, T.; Xu, S. D.; Li, X. E.; Bryant, D.; Mclachlan, M. A.; Durrant, J. R. Passivation against oxygen and light induced degradation by the PCBM electron transport layer in planar perovskite solar cells. Sustain. Energy Fuels 2018, 2, 1686–1692.

    Article  CAS  Google Scholar 

  61. Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

    Article  CAS  Google Scholar 

  62. Dagar, J.; Castro-Hermosa, S.; Gasbarri, M.; Palma, A. L.; Cina, L.; Matteocci, F.; Calabrò, E.; Di Carlo, A.; Brown, T. M. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res. 2018, 11, 2669–2681.

    Article  CAS  Google Scholar 

  63. Tsikritzis, D.; Rogdakis, K.; Chatzimanolis, K.; Petrović, M.; Tzoganakis, N.; Najafi, L.; Martín-García, B.; Oropesa-Nuñez, R.; Bellani, S.; Del Rio Castillo, A. E. et al. A two-fold engineering approach based on Bi2Te3 flakes towards efficient and stable inverted perovskite solar cells. Mater. Adv. 2020, 1, 450–462.

    Article  CAS  Google Scholar 

  64. Thakur, U. K.; Askar, A. M.; Kisslinger, R.; Wiltshire, B. D.; Kar, P.; Shankar, K. Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: Impact of nanorod morphology. Nanotechnology 2017, 28, 274001.

    Article  CAS  Google Scholar 

  65. Ji, X. L.; Liu, B. Q.; Tang, H. J.; Yang, X. L.; Li, X.; Gong, H. M.; Shen, B.; Han, P.; Yan, F. 2.6 µm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Adv. 2014, 4, 087135.

    Article  CAS  Google Scholar 

  66. Wetzelaer, G. A. H.; Kuik, M.; Lenes, M.; Blom, P. W. M. Origin of the dark-current ideality factor in polymer: Fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2011, 99, 153506.

    Article  CAS  Google Scholar 

  67. Carrillo, J.; Guerrero, A.; Rahimnejad, S.; Almora, O.; Zarazua, I.; Mas-Marza, E.; Bisquert, J.; Garcia-Belmonte, G. Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 2016, 6, 1502246.

    Article  CAS  Google Scholar 

  68. Moerman, D.; Eperon, G. E.; Precht, J. T.; Ginger, D. S. Correlating photoluminescence heterogeneity with local electronic properties in methylammonium lead tribromide perovskite thin films. Chem. Mater. 2017, 29, 5484–5492.

    Article  CAS  Google Scholar 

  69. Chavan, R. D.; Yadav, P.; Nimbalkar, A.; Bhoite, S. P.; Bhosale, P. N.; Kook Hong, C. Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Sol. Energy 2019, 186, 156–165.

    Article  CAS  Google Scholar 

  70. Hidalgo, J.; Castro-Méndez, A. F.; Correa-Baena, J. Imaging and mapping characterization tools for perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900444.

    Article  CAS  Google Scholar 

  71. Dou, B. J.; Miller, E. M.; Christians, J. A.; Sanehira, E. M.; Klein, T. R.; Barnes, F. S.; Shaheen, S. E.; Garner, S. M.; Ghosh, S.; Mallick, A. et al. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. J. Phys. Chem. Lett. 2017, 8, 4960–4966.

    Article  CAS  Google Scholar 

  72. Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

    Article  CAS  Google Scholar 

  73. Park, N. G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 2020, 70, 1903106.

    Article  CAS  Google Scholar 

  74. Di Girolamo, D.; Matteocci, F.; Kosasih, F. U.; Chistiakova, G.; Zuo, W. W.; Divitini, G.; Korte, L.; Ducati, C.; Di Carlo, A.; Dini, D. et al. Stability and dark hysteresis correlate in NiO-based perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901642.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Petróleo Brasileiro S.A. (PETROBRAS) under the project “Research and Development of Perovskite formulations for production of printed photovoltaic cells and modules” for funding. S. C.-H and T. M. B. acknowledge to have received funding from Departamento del Huila’s Scholarship Program No. 677 from Huila, Colombia, the European Union’s Horizon 2020 research and innovation program under grant agreement no. 763989 APOLO, Lazio Region “Gruppi di Ricerca” under project no. 85-2017-15373 (SIROH) according to L.R. Lazio 13/08, and the Italian Ministry of University and Research (MIUR) through the PRIN2017 BOOSTER (project n.2017YXX8AZ) grant. This publication reflects only the authors’ views and the funding agencies are not liable for any use that may be made of the information contained therein. We thank to Gabriela Amorim for solar cell encapsulation. We thank engineering department at CSEM Brasil for developing the nitrogen blower system. We thank to Centro de Microscopia, Laboratório de Caracterização e de Processamento de Nanomateriais from Federal University of Minas Gerais, for providing the experimental facilities and Prof. Wagner da Nova Mussel for XRD results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergio Castro-Hermosa or Diego Bagnis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Hermosa, S., Wouk, L., Bicalho, I.S. et al. Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Res. 14, 1034–1042 (2021). https://doi.org/10.1007/s12274-020-3147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3147-4

Keywords

Navigation