Skip to main content
Log in

A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal sulfide based materials as photocatalysts for energy conversion are essential to produce value-added chemical fuels, but their intrinsically slow carrier dynamics and low activity are yet to be resolved. Herein, we developed a unique heterogeneously nanostructured ZnIn2S4-CdS heterostructure that involves zero-dimensional (0D) CdS quantum dots uniformly confined on three-dimensional (3D) ZnIn2S4 nanoflowers, which achieves an excellent catalytic performance of CO2 photoconversion under visible-light irradiation. The obtained hierarchical heterostructure can significantly enhance the light harvesting, shorten the migration distance of carriers, and obviously accelerate the transport of electrons. As evidenced by the ultrafast transient absorption spectroscopy, the formed interface can effectively facilitate charge separation and transport. This work opens up a new avenue to carefully design the elaborate heterostructures for achieving optimal charge separation efficiency by lowering interfacial kinetic barriers and energy losses at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

    CAS  Google Scholar 

  2. Zhang, P.; Lou, X. W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. 2019, 31, 1900281.

    Google Scholar 

  3. Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

    CAS  Google Scholar 

  4. Shan, J. J.; Raziq, F.; Humayun, M.; Zhou, W.; Qu, Y.; Wang, G. F.; Li, Y. D. Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2017, 219, 10–17.

    CAS  Google Scholar 

  5. Nie, N.; Zhang, L. Y.; Fu, J. W.; Cheng, B.; Yu, J. G. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. 2018, 441, 12–22.

    CAS  Google Scholar 

  6. Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

    CAS  Google Scholar 

  7. Vu, N. N.; Kaliaguine, S.; Do, T. O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv. Funct. Mater. 2019, 29, 1901825.

    Google Scholar 

  8. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, C. J.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    CAS  Google Scholar 

  9. Bian, J.; Feng, J. N.; Zhang, Z. Q.; Li, Z. J.; Zhang, Y. H.; Liu, Y. D.; Ali, S.; Qu, Y.; Bai, L. L.; Xie, J. J. et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Agnew. Chem., Int. Ed. 2019, 55, 10873–10878.

    Google Scholar 

  10. Ma, Y. J.; Tang, Q.; Sun, W. Y.; Yao, Z. Y.; Zhu, W. H.; Li, T.; Wang, J. Y. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Appl. Catal. B: Environ. 2020, 270, 118856.

    CAS  Google Scholar 

  11. Tahir, M.; Tahir, B.; Amin, N. A. S.; Zakaria, Z. Y. Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO2 NWs core/shell hetero-junction under UV and visible light. J. CO2Util. 2017, 15, 250–260.

    Google Scholar 

  12. Zhu, S. Y.; Liao, W. R.; Zhang, M. Y.; Liang, S. J. Design of spatially separated Au and CoO dual cocatalysts on hollow TiO2 for enhanced photocatalytic activity towards the reduction of CO2 to CH4. Chem. Eng. J. 2019, 361, 461–469.

    CAS  Google Scholar 

  13. Lou, Z. Z.; Zhang, P.; Li, J.; Yang, X. G.; Huang, B. B.; Li, B. J. Plasmonic heterostructure TiO2-MCs/WO3−x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.

    Google Scholar 

  14. Bi, Q. Q.; Wang, J. W.; Lv, J. X.; Wang, J.; Zhang, W.; Lu, T. B. Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst. ACS Catal. 2018, 5, 11815–11821.

    Google Scholar 

  15. Zhu, Z. Z.; Han, Y.; Chen, C. P.; Ding, Z. X.; Long, J. L.; Hou, Y. D. Reduced graphene oxide-cadmium sulfide nanorods decorated with silver nanoparticles for efficient photocatalytic reduction carbon dioxide under visible light. ChemCatChem 2018, 10, 1627–1634.

    CAS  Google Scholar 

  16. Men, Y. L.; You, Y.; Pan, Y. X.; Gao, H. C.; Xia, Y.; Cheng, D. G.; Song, J.; Cui, D. X.; Wu, N.; Li, Y. T. et al. Selective CO evolution from photoreduction of CO2 on a metal-carbide-based composite catalyst. J. Am. Chem. Soc. 2018, 140, 13071–13077.

    CAS  Google Scholar 

  17. Wang, H. Y.; Hu, R.; Lei, Y. J.; Jia, Z. Y.; Hu, G. L.; Li, C. B.; Gu, Q. Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal. Sci. Technol. 2020, 10, 2821–2829.

    CAS  Google Scholar 

  18. Qin, J. N.; Wang, S. B.; Ren, H.; Hou, Y. D.; Wang, X. C. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B: Environ. 2015, 179, 1–8.

    CAS  Google Scholar 

  19. Yu, J. G.; Wang, K.; Xiao, W.; Cheng, B. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 11492–11501.

    CAS  Google Scholar 

  20. Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    CAS  Google Scholar 

  21. Talapaneni, S. N.; Singh, G.; Kim, I. Y.; AlBahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.

    CAS  Google Scholar 

  22. Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

    CAS  Google Scholar 

  23. Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.

    CAS  Google Scholar 

  24. Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Agnew. Chem., Int. Ed. 2014, 53, 2339–2343.

    CAS  Google Scholar 

  25. Lin, H. F.; Li, Y. Y.; Li, H. L.; Wang, X. Multi-node CdS heteronanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377–1392.

    CAS  Google Scholar 

  26. Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

    CAS  Google Scholar 

  27. Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457–462.

    CAS  Google Scholar 

  28. Wang, S. B.; Wang, Y.; Zang, S. Q.; Lou, X. W. Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2020, 4, 1900586.

    CAS  Google Scholar 

  29. Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

    Google Scholar 

  30. Wang, H.; Zhang, X. D.; Xie, Y. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R: Rep. 2018, 130, 1–39.

    Google Scholar 

  31. Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

    CAS  Google Scholar 

  32. Wang, X.; Lv, J.; Zhang, J. X.; Wang, X. L.; Xue, C. Z.; Bian, G. Q.; Li, D. S.; Wang, Y.; Wu, T. Hierarchical heterostructure of SnO2 confined on CuS nanosheets for efficient electrocatalytic CO2 reduction. Nanoscale 2020, 12, 772–784.

    CAS  Google Scholar 

  33. Xu, Z. L.; Zhuang, C. S.; Zou, Z. J.; Wang, J. Y.; Xu, X. C.; Peng, T. Y. Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 2017, 10, 2193–2209.

    CAS  Google Scholar 

  34. Xiong, J.; Song, P.; Di, J.; Li, H. M. Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Appl. Catal. B: Environ. 2019, 256, 117788.

    CAS  Google Scholar 

  35. Li, A.; Wang, T.; Li, C. C.; Huang, Z. Q.; Luo, Z. B.; Gong, J. L. Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to methanol. Agnew. Chem., Int. Ed. 2019, 58, 3804–3808.

    CAS  Google Scholar 

  36. Yang, M. Q.; Xu, Y. J.; Lu, W. H.; Zeng, K. Y.; Zhu, H.; Xu, Q. H.; Ho, G. W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.

    CAS  Google Scholar 

  37. Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711.

    CAS  Google Scholar 

  38. Li, H. Y.; Liu, X. Z.; Chen, S. M.; Yang, D. R.; Zhang, Q.; Song, L.; Xiao, H.; Zhang, Q. H.; Gu, L.; Wang, X. Edge-exposed molybdenum disulfide with N-doped carbon hybridization: A hierarchical hollow electrocatalyst for carbon dioxide reduction. Adv. Energy Mater. 2019, 9, 1900072.

    Google Scholar 

  39. Wang, S. B.; Guan, B. Y.; Lou, X. W. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040.

    CAS  Google Scholar 

  40. He, Y. Q.; Rao, H.; Song, K. P.; Li, J. X.; Yu, Y.; Lou, Y.; Li, C. G.; Han, Y.; Shi, Z.; Feng, S. H. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.

    CAS  Google Scholar 

  41. Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552–565.

    CAS  Google Scholar 

  42. Zhou, M.; Wang, S. B.; Yang, P. J.; Huang, C. J.; Wang, X. C. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936.

    CAS  Google Scholar 

  43. Yan, A. H.; Shi, X. W.; Huang, F.; Fujitsuka, M.; Majima, T. Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer. Appl. Catal. B: Environ. 2019, 250, 163–170.

    CAS  Google Scholar 

  44. Li, H.; Li, W. J.; Li, W.; Chen, M. F.; Snyders, R.; Bittencourt, C.; Yuan, Z. H. Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 2020, 13, 583–590.

    CAS  Google Scholar 

  45. Wang, S. B.; Guan, B. Y.; Lu, Y.; Lou, X. W. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.

    CAS  Google Scholar 

  46. Xu, H. Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H. L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.

    CAS  Google Scholar 

  47. Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

    CAS  Google Scholar 

  48. Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.; Xu, H. X.; Xiong, Y. J. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447–16451.

    CAS  Google Scholar 

  49. Zhou, M.; Wang, S. B.; Yang, P. J.; Luo, Z. S.; Yuan, R. S.; Asiri, A. M.; Wakeel, M.; Wang, X. C. Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem. —Eur. J. 2018, 24, 18529–18534.

    CAS  Google Scholar 

  50. Ye, L.; Li, Z. H. Rapid microwave-assisted syntheses of reduced graphene oxide (RGO)/ZnIn2S4 microspheres as superior noble-metal-free photocatalyst for hydrogen evolutions under visible light. Appl. Catal. B: Environ. 2014, 160–161, 552–557.

    Google Scholar 

  51. Wu, Y.; Wang, H.; Tu, W. G.; Wu, S. Y.; Chew, J. W. Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1−5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B: Environ. 2019, 256, 117810.

    CAS  Google Scholar 

  52. Chao, Y. G.; Zhou, P.; Li, N.; Lai, J. P.; Yang, Y.; Zhang, Y. L.; Tang, Y. H.; Yang, W. X.; Du, Y. P.; Su, D. et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 2019, 31, 1807226.

    Google Scholar 

  53. Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519–4524.

    CAS  Google Scholar 

  54. Shao, L. Q.; Jiang, D. L.; Xiao, P.; Zhu, L. M.; Meng, S. C.; Chen, M. Enhancement of g-C3N4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Appl. Catal. B: Environ. 2016, 198, 200–210.

    CAS  Google Scholar 

  55. Xiao, M.; Wang, Z. L.; Lyu, M. Q.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

    Google Scholar 

  56. Wei, Y. Z.; Wang, J. Y.; Yu, R. B.; Wan, J. W.; Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 1422–1426.

    CAS  Google Scholar 

  57. Zhu, Y. K.; Lv, C. X.; Yin, Z. C.; Ren, J.; Yang, X. F.; Dong, C. L.; Liu, H. W.; Cai, R. S.; Huang, Y. C.; Theis, W. et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868–873.

    CAS  Google Scholar 

  58. Zhang, P.; Wang, S. B.; Guan, B. Y.; Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164–168.

    CAS  Google Scholar 

  59. Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.

    Google Scholar 

  60. Zeng, Z. P.; Yan, Y. B.; Chen, J.; Zan, P.; Tian, Q. H.; Chen, P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 2019, 29, 1806500.

    Google Scholar 

  61. Zhu, Z. Z.; Qin, J. N.; Jiang, M.; Ding, Z. X.; Hou, Y. D. Enhanced selective photocatalytic CO2 reduction into CO over Ag/CdS nanocomposites under visible light. Appl. Surf. Sci. 2017, 391, 572–579.

    CAS  Google Scholar 

  62. Chang, X. X.; Wang, T.; Zhang, P.; Zhang, J. J.; Li, A.; Gong, J. L. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

    CAS  Google Scholar 

  63. Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L. Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev., in press, DOI: https://doi.org/10.1093/nsr/nwaa059.

  64. Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Lu, Y.; Xie, Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266–9270.

    CAS  Google Scholar 

  65. Yang, W. L.; Zhang, L.; Xie, J. F.; Zhang, X. D.; Liu, Q. H.; Yao, T.; Wei, S. Q.; Zhang, Q.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6716–6720.

    CAS  Google Scholar 

  66. Shao, W.; Wang, L.; Wang, H.; Zhao, Z.; Zhang, X. D.; Jiang, S. L.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Xie, Y. Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance. J. Phys. Chem. Lett. 2019, 10, 2904–2910.

    CAS  Google Scholar 

  67. Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.

    CAS  Google Scholar 

  68. Lin, J. L.; Hou, Y. D.; Zheng, Y.; Wang X. C. Integration of [(Co(bpy)3]2+ electron mediator with heterogeneous photocatalysts for CO2 conversion. Chem. Asian J. 2014, 9, 2468–2474.

    CAS  Google Scholar 

  69. Huang, L. J.; Li, B. F.; Su, B.; Xiong, Z.; Zhang, C. J.; Hou, Y. D.; Ding, Z. X.; Wang, S. B. Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light. J. Mater. Chem. A 2020, 5, 7177–7183.

    Google Scholar 

  70. Zhao, G. X.; Zhou, W.; Sun, Y. B.; Wang, X. K.; Liu, H. M.; Meng, X. G.; Chang, K.; Ye J. H. Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Appl. Catal. B: Envirmon. 2018, 226, 252–257.

    CAS  Google Scholar 

  71. Su, B.; Huang, L. J.; Xiong, Z.; Yang, Y. C.; Hou, Y. D.; Ding, Z. X.; Wang, S. B. Branch-like ZnS-DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction. J. Mater. Chem. A 2019, 7, 26877–26883.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21573211, 21633007, 21671180), the National Key R&D Program of China (Nos. 2016YFA0200602, 2017YFA0208300, 2017YFA0700104, and 2018YFA0208702), and the Anhui Initiative in Quantum Information Technologies (No. AHY090200). We also thank the funding support from the CAS Fujian Institute of Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yagang Yao, Qun Zhang or Yuen Wu.

Additional information

Conflicts of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

12274_2020_3045_MOESM1_ESM.pdf

A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Li, X., Qu, Y. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 14, 81–90 (2021). https://doi.org/10.1007/s12274-020-3045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3045-9

Keywords

Navigation