Skip to main content
Log in

Water triggered interfacial synthesis of highly luminescent CsPbX3:Mn2+ quantum dots from nonluminescent quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Currently, lead halide perovskite quantum dots (PeQDs) have attracted great attention due to their spectacular photophysical properties. However, the toxicity of Pb2+ heavy metal ions in CsPbX3 PeQDs limits their practical applications. Herein, a facile post-treatment doping method is proposed, which enables the preparation of highly luminescent low-toxic CsPbX3:Mn2+ PeQDs from nonluminescent Cs4PbX6 PeQDs at water interface. The monodispersed CsPbX3:Mn2+ PeQDs exhibit excellent photophysical properties, including high photoluminescence quantum yield up to 87%. The reaction process and doping mechanism are deeply explored through in-situ monitoring. By simply adjusting the halide composition of the original Cs4PbX6 PeQDs or Mn doping concentration, a series of CsPbX3:Mn2+ PeQDs with adjustable emission could be obtained. Further, the CsPbX3:Mn2+ Q-LED was fabricated and exhibited excellent orange light with the color coordinates of (0.564, 0.399), correlated color temperature (CCT) of 1,918 K, and luminous efficiency (LE) of 24 lm/W, which illustrate the great promise in light emitting diode (LED) applications. This work not only provides a facile method for the preparation of highly luminescent low-toxic CsPbX3:Mn2+ PeQDs, but also provides insights into the mechanism of doping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J. M.; Shen, L. L.; Chen, Y.; Zhao, Y.; Zhang, Y. Q.; Jin, M. F. F.; Yang, H. S.; Zhang, Y. J.; Xiang, W. D.; Liang, X. J. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering. J Mater. Chem. C 2019, 7, 13606–13612.

    CAS  Google Scholar 

  2. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    CAS  Google Scholar 

  3. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    CAS  Google Scholar 

  4. Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G; Petrozza, A.; Snaith, H. J. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 2015, 6, 432–437.

    CAS  Google Scholar 

  5. Kovalenko, M. V.; Bodnarchuk, M. I. Lead halide perovskite nano-crystals: From discovery to self-assembly and applications. CHIMIA 7nt. J. Chem. 2017, 77, 461–470.

    Google Scholar 

  6. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    CAS  Google Scholar 

  7. Malgras, V.; Tominaka, S.; Ryan, J. W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 2016, 138, 13874–13881.

    CAS  Google Scholar 

  8. Wang, H. C.; Bao, Z.; Tsai, H. Y.; Tang, A. C.; Liu, R. S. Perovskite quantum dots and their application in light-emitting diodes. Small 2018, 14, 1702433.

    Google Scholar 

  9. Ren, J. J.; Dong, X.; Zhang, G. Y.; Li, T. R.; Wang, Y. H. Air-stable and water-resistant all-inorganic perovskite quantum dot films for white-light-emitting applications. New J. Chem. 2017, 41, 13961–13967.

    CAS  Google Scholar 

  10. Wei, Y.; Deng, X. R.; Xie, Z. X.; Cai, X. C.; Liang, S. S.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Lin, J. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater. 2017, 27, 1703535.

    Google Scholar 

  11. Ren, J. J.; Li, T. R.; Zhou, X. P.; Dong, X.; Shorokhov, A. V.; Semenov, M. B.; Krevchik, V. D.; Wang, Y. H. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem. Eng. J. 2019, 358, 30–39.

    CAS  Google Scholar 

  12. Ren, J. J.; Zhou, X. P.; Wang, Y. H. Dual-emitting CsPbX3@ZJU-28 (X=Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chem. Eng. J. 2020, 391, 123622.

    CAS  Google Scholar 

  13. Li, C. L.; Zang, Z. G.; Chen, W. W.; Hu, Z. P.; Tang, X. S.; Hu, W.; Sun, K.; Liu, X. M.; Chen, W. M. Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 2016, 24, 15071–15078.

    CAS  Google Scholar 

  14. Li, G. R.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Pena, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.

    CAS  Google Scholar 

  15. Shen, X. Y.; Sun, C.; Bai, X.; Zhang, X. Y.; Wang, Y.; Wang, Y. D.; Song, H. W.; Yu, W. W. Efficient and stable CsPb(Br/I)3@anthracene composites for white light-emitting devices. ACS Appl. Mater. Interfaces 2018, 10, 16768–16775.

    CAS  Google Scholar 

  16. Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088–10094.

    CAS  Google Scholar 

  17. Yoon, H. C.; Kang, H.; Lee, S.; Oh, J. H.; Yang, H.; Do, Y. R. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 2016, 8, 18189–18200.

    CAS  Google Scholar 

  18. Wei, Y.; Xiao, H.; Xie, Z. X.; Liang, S.; Liang, S. S.; Cai, X. C.; Huang, S. S.; Al Kheraif, A. A.; Jang, H. S.; Cheng, Z. Y. et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv. Opt. Mater. 2018, 6, 1701343.

    Google Scholar 

  19. Hao, J. R.; Qu, X. Y.; Qiu, L.; Li, G G; Wei, Y.; Xing, G C.; Wang, H. Q.; Yan, C. J.; Jang, H. S.; Cheng, Z. Y. et al. One-step loading on natural mineral Halloysite nanotube: An effective way to enhance the stability of perovskite CsPbX3 (X = Cl, Br, I) quantum dots. Adv. Opt. Mater. 2019, 7, 1801323.

  20. Wei, Y.; Li, K.; Cheng, Z. Y.; Liu, M. M.; Xiao, H.; Dang, P. P.; Liang, S. S.; Wu, Z. J.; Lian, H. Z.; Lin, J. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: A novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv. Mater. 2019, 31, 1807592.

    Google Scholar 

  21. Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.

    CAS  Google Scholar 

  22. Zhang, D. W.; Zhao, J.; Liu, Q. L.; Xia, Z. G Synthesis and luminescence properties of CsPbX3@Uio-67 composites toward stable photoluminescence converters. Inorg. Chem. 2019, 58, 1690–1696.

    CAS  Google Scholar 

  23. Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nano-composites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

    CAS  Google Scholar 

  24. Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.

    CAS  Google Scholar 

  25. Ma, Q. S.; Huang, S. J.; Wen, X. M.; Green, M. A.; Ho-Baillie, A. W. Y. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 2016, 6, 1502202.

    Google Scholar 

  26. Li, C. L.; Han, C.; Zhang, Y. B.; Zang, Z. G.; Wang, M.; Tang, X. S.; Du, J. H. Enhanced photoresponse of self-powered perovskite photo-detector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Mater. Solar Cells 2017, 172, 341–346.

    CAS  Google Scholar 

  27. Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photo-detector applications. Chem. Commun. 2016, 52, 2067–2070.

    CAS  Google Scholar 

  28. Yan, D. D.; Shi, T. C.; Zang, Z. G.; Zhou, T. W.; Liu, Z. Z.; Zhang, Z. Y.; Du, J.; Leng, Y. X.; Tang, X. S. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 2019, 15, 1901173.

    Google Scholar 

  29. Yuan, S.; Chen, D. Q.; Li, X. Y.; Zhong, J. S.; Xu, X. H. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918–18926.

    CAS  Google Scholar 

  30. Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sc;. 2017, 4, 1700335.

    Google Scholar 

  31. Sun, J.; Yang, J.; Lee, J. I.; Cho, J. H.; Kang, M. S. Lead-free perovskite nanocrystals for light-emitting devices. J. Phys. Chem. Lett. 2018, 9, 1573–1583.

    CAS  Google Scholar 

  32. van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.

    CAS  Google Scholar 

  33. Shapiro, A.; Heindl, M. W.; Horani, F.; Dahan, M. H.; Tang, J.; Amouyal, Y.; Lifshitz, E. Significance of Ni doping in CsPbX3 nanocrystals via postsynthesis cation-anion coexchange. J. Phys. Chem. C 2019, 123, 24979–24987.

    CAS  Google Scholar 

  34. Zhang, Z. L.; Shen, L. L.; Zhang, H. L.; Ding, L.; Shao, G. Z.; Liang, X. J.; Xiang, W. D. Novel red-emitting CsPb1−xTixI3 perovskite qds@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs. Chem. Eng. J. 2019, 378, 122125.

    CAS  Google Scholar 

  35. Chen, J.; Luo, Z. Y.; Fu, Y. P.; Wang, X. X.; Czech, K. J.; Shen, S. H.; Guo, L. J.; Wright, J. C.; Pan, A. L.; Jin, S. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires. ACS Energy Lett. 2019, 4, 1045–1052.

    CAS  Google Scholar 

  36. Yang, R. X.; Skelton, J. M.; da Silva, E. L.; Frost, J. M.; Walsh, A. Spontaneous octahedral tilting in the cubic inorganic cesium halide perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I). J. Phys. Chem. Lett. 2017, 8, 4720–4726.

    CAS  Google Scholar 

  37. Zhang, Q. Q.; Mushahali, H.; Duan, H. M.; Lee, M. H.; Jing, Q. The linear and nonlinear optical response of CsGeX3 (X = Cl, Br, and I): The finite field and first-principles investigation. Optik 2019, 179, 89–98.

    CAS  Google Scholar 

  38. Chen, L. J. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Adv. 2018, 8, 18396–18399.

    CAS  Google Scholar 

  39. Kang, Y.; Kang, S.; Han, S. Influence of Bi doping on physical properties of lead halide perovskites: A comparative first-principles study between CsPbI3 and CsPbBr3. Mater. Today Adv. 2019, 3, 100019.

    Google Scholar 

  40. Zhang, J. J.; Yang, L.; Liu, R. Y.; Chen, L. J. Stabilization of all-inorganic α-CsPbI3 Perovskite by Bi or Sb doping. Mater. Res. Express 2019, 6, 105529.

    CAS  Google Scholar 

  41. Filip, M. R.; Liu, X. L.; Miglio, A.; Hautier, G.; Giustino, F. Phase diagrams and stability of lead-free halide double perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. J. Phys. Chem. C 2017, 122, 158–170.

    Google Scholar 

  42. Thapa, S.; Adhikari, G. C.; Zhu, H. Y.; Grigoriev, A.; Zhu, P. F. Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality. Sci. Rep. 2019, 9, 18636.

    CAS  Google Scholar 

  43. Liu, H. W.; Wu, Z. N.; Shao, J. R.; Yao, D.; Gao, H.; Liu, Y.; Yu, W. L.; Zhang, H.; Yang, B. CsPbxMn1-xCl3 Perovskite quantum dots with high Mn substitution ratio. ACS Nano 2017, 11, 2239–2247.

    CAS  Google Scholar 

  44. Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.

    CAS  Google Scholar 

  45. Lin, C. C.; Xu, K. Y.; Wang, D.; Meijerink, A. Luminescent manganese-doped CsPbCl3 perovskite quantum dots. Sci. Rep. 2017, 7, 45906.

  46. Chen, D. Q.; Fang, G. L.; Chen, X. Silica-coated Mn-Doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: Exciton-to-Mn energy transfer and blue-excitable solid-state lighting. ACS Appl. Mater. Interfaces 2017, 9, 40477–40487.

    CAS  Google Scholar 

  47. Ye, S.; Sun, J. Y.; Han, Y. H.; Zhou, Y. Y.; Zhang, Q. Y. Confining Mn2+-doped lead halide perovskite in zeolite-Y as ultrastable orangered phosphor composites for white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 24656–24664.

    CAS  Google Scholar 

  48. Li, Q. Y.; Ji, S. H.; Yuan, X.; Li, J.; Fan, Y.; Zhang, J. H.; Zhao, J. L.; Li, H. B. Ultraviolet light-induced degradation of luminescence in Mn-doped CsPbCl3 nanocrystals. J. Phys. Chem. C 2019, 123, 14849–14857.

    CAS  Google Scholar 

  49. Li, F.; Xia, Z. G.; Gong, Y.; Gu, L.; Liu, Q. L. Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction. J. Mater. Chem. C 2017, 5, 9281–9287.

    CAS  Google Scholar 

  50. Li, F.; Xia, Z. G.; Pan, C. F.; Gong, Y.; Gu, L.; Liu, Q. L.; Zhang, J. Z. High Br content CsPb(ClyBr1−y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering. ACS Appl. Mater. Interfaces 2018, 10, 11739–11746.

    CAS  Google Scholar 

  51. Zhu, J. R.; Yang, X. L.; Zhu, Y. H.; Wang, Y. W.; Cai, J.; Shen, J. H.; Sun, L. Y.; Li, C. Z. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio. J. Phys. Chem. Lett. 2017, 8, 4167–4171.

    CAS  Google Scholar 

  52. Mir, W. J.; Jagadeeswararao, M.; Das, S.; Nag, A. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Lett. 2017, 2, 537–543.

    CAS  Google Scholar 

  53. Xu, W.; Li, F. M.; Lin, F. Y.; Chen, Y.; Cai, Z. X.; Wang, Y.; Chen, X. Synthesis of CsPbCl3-Mn nanocrystals via cation exchange. Adv. Opt. Mater. 2017, 5, 1700520.

    Google Scholar 

  54. Chen, D. Q.; Zhou, S.; Fang, G. L.; Chen, X.; Zhong, J. S. Fast room-temperature cation exchange synthesis of Mn-doped CsPbCl3 nanocrystals driven by dynamic halogen exchange. ACS Appl. Mater. Interfaces 2018, 10, 39872–39878.

    CAS  Google Scholar 

  55. Mir, W. J.; Mahor, Y.; Lohar, A.; Jagadeeswararao, M.; Das, S.; Mahamuni, S.; Nag, A. Postsynthesis doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals for downconversion emission. Chem. Mater. 2018, 30, 8170–8178.

    CAS  Google Scholar 

  56. Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 Nanocrystals. Nano Lett. 2017, 17, 1924–1930.

    CAS  Google Scholar 

  57. Tan, L.; Wang, W.; Li, Q.; Luo, Z. S.; Zou, C.; Tang, M.; Zhang, L. M.; He, J. Q.; Quan, Z. W. Colloidal syntheses of zero-dimensional Cs4SnX6 (X = Br, I) nanocrystals with high emission efficiencies. Chem. Commun. 2020, 56, 387–390.

    CAS  Google Scholar 

  58. Yang, D.; Li, P. L.; Zou, Y. T.; Cao, M. H.; Hu, H. C.; Zhong, Q. X.; Hu, J. X.; Sun, B. Q.; Duhm, S.; Xu, Y. et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 2019, 31, 1575–1583.

    CAS  Google Scholar 

  59. Li, Z.; Hu, Q. S.; Tan, Z. F.; Yang, Y.; Leng, M. Y.; Liu, X. L.; Ge, C.; Niu, G. D.; Tang, J. Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence. ACS Appl. Mater. Interfaces 2018, 10, 43915–43922.

    CAS  Google Scholar 

  60. Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.

    CAS  Google Scholar 

  61. Zhang, Y. M.; Fan, B. L.; Liu, Y. Z.; Li, H. X.; Deng, K. M.; Fan, J. Y. Quasi-self-trapped Frenkel-exciton near-UV luminescence with large Stokes shift in wide-bandgap Cs4PbCl6 nanocrystals. Appl. Phys. Lett. 2018, 112, 183101.

    Google Scholar 

  62. Liu, Y.; Li, F.; Liu, Q. L.; Xia, Z. G. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater. 2018, 30, 6922–6929.

    CAS  Google Scholar 

  63. Chen, D. Q.; Zhou, S.; Tian, F. F.; Ke, H. T.; Jiang, N. Z.; Wang, S. J.; Peng, Y. Z.; Liu, Y. Halogen-hot-injection synthesis of Mn-doped CsPb(Cl/Br)3 nanocrystals with blue/orange dual-color luminescence and high photoluminescence quantum yield. Adv. Opt. Mater. 2019, 7, 1901082.

    CAS  Google Scholar 

  64. Ahmed, T.; Seth, S.; Samanta, A. Boosting the photoluminescence of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts. Chem. Mater. 2018, 30, 3633–3637.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. U1905213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Zhou, X. & Wang, Y. Water triggered interfacial synthesis of highly luminescent CsPbX3:Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 13, 3387–3395 (2020). https://doi.org/10.1007/s12274-020-3026-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3026-z

Keywords

Navigation