Skip to main content
Log in

Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Systematic control of grain boundary densities in various platinum (Pt) nanostructures was achieved by specific peptide-assisted assembly and coagulation of nanocrystals. A positive quadratic correlation was observed between the oxygen reduction reaction (ORR) specific activities of the Pt nanostructures and the grain boundary densities on their surfaces. Compared to commercial Pt/C, the grain-boundary-rich strain-free Pt ultrathin nanoplates demonstrated a 15.5 times higher specific activity and a 13.7 times higher mass activity. Simulation studies suggested that the specific activity of ORR was proportional to the resident number and the resident time of oxygen on the catalyst surface, both of which correlate positively with grain boundary density, leading to improved ORR activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strasser, P. Catalysts by Platonic design. Science 2015, 349, 379–380.

    CAS  Google Scholar 

  2. Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

    CAS  Google Scholar 

  3. Wilson, N. M.; Pan, Y. T.; Shao, Y. T.; Zuo, J. M.; Yang, H.; Flaherty, D. W. Direct synthesis of H2O2 on AgPt octahedra: The importance of Ag-Pt coordination for high H2O2 selectivity. ACS Catal. 2018, 8, 2880–2889.

    CAS  Google Scholar 

  4. Li, C. Z.; Liu, T. Y.; He, T.; Ni, B.; Yuan, Q.; Wang, X. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale 2018, 10, 4670–4674.

    CAS  Google Scholar 

  5. Liu, H. P.; Zhong, P.; Liu, K.; Han, L.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity. Chem. Sci. 2018, 9, 398–404

    CAS  Google Scholar 

  6. Lei, W. J.; Li, M. G; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based Nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

    CAS  Google Scholar 

  7. Huang, L. P.; Zhang, W.; Li, P.; Song, Y. B.; Sheng, H. T.; Du, Y. X.; Wang, Y. G; Wu, Y. E.; Hong, X.; Ding Y. H. et al. Exposing Cu-rich {110} active facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Res. 2019, 12, 1147–1153.

    CAS  Google Scholar 

  8. Stephens, I. E. L.; Bondarenko, A. S.; Granbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

    CAS  Google Scholar 

  9. Wang, L.; Holewinski, A.; Wang, C. Prospects of platinum-based nanostructures for the electrocatalytic reduction of oxygen. ACS Catal. 2018, 8, 9388–9398.

    CAS  Google Scholar 

  10. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    CAS  Google Scholar 

  11. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    CAS  Google Scholar 

  12. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    CAS  Google Scholar 

  13. Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

    CAS  Google Scholar 

  14. Nerskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Google Scholar 

  15. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    CAS  Google Scholar 

  16. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    CAS  Google Scholar 

  17. He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.

    CAS  Google Scholar 

  18. Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

    CAS  Google Scholar 

  19. Liang, H. W.; Cao, X.; Zhou, F.; Cui, C. H.; Zhang, W. J.; Yu, S. H. A Free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.

    CAS  Google Scholar 

  20. Zhou, S.; Zhao, M.; Yang, T. H.; Xia, Y. N. Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Materialstoday 2019, 22, 108–131.

    CAS  Google Scholar 

  21. Cheng, H.; Liu, S.; Hao, Z. K.; Wang, J. Y.; Liu, B. J.; Liu, G. Y.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chem. Sci. 2019, 10, 5589–5595.

    CAS  Google Scholar 

  22. Zhang, T.; Bai, Y.; Sun, Y. Q.; Hang, L. F.; Li, X. Y.; Liu, D. L.; Lyu, X.; Li, C. C.; Cai, W. P.; Li, Y. Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J. Mater. Chem. A 2018, 6, 13735–13742.

    CAS  Google Scholar 

  23. Gao, D. W.; Li, S.; Lv, Y. P.; Zhuo, H. Y.; Zhao, S.; Song, L. H.; Yang, S. H.; Qin, Y. C.; Li, C. C.; Wei, Q. et al. PtNi colloidal nanoparticle clusters: Tuning electronic structure and boundary density of nanocrystal subunits for enhanced electrocatalytic properties. J. Catal. 2019, 376, 87–100.

    CAS  Google Scholar 

  24. Huang, H. W.; Ruditskiy, A.; Choi, S. I.; Zhang, L.; Liu, J. Y.; Ye, Z.; Xia, Y. N. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212.

    CAS  Google Scholar 

  25. Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

    CAS  Google Scholar 

  26. Olmsted, D. L.; Foiles, S. M.; Holm, E. A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009, 57, 3694–3703.

    CAS  Google Scholar 

  27. Zhu, E. B.; Yan, X. C.; Wang, S. Y.; Xu, M. J.; Wang, C.; Liu, H. T.; Huang, J.; Xue, W.; Cai, J.; Heinz, H. et al. Peptide-assisted 2-D assembly toward free-floating ultrathin platinum nanoplates as effective electrocatalysts. Nano Lett. 2019, 19, 3730–3736.

    CAS  Google Scholar 

  28. Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.

    CAS  Google Scholar 

  29. Chen, J. J.; Zhu, E. B.; Liu, J.; Zhang, S.; Lin, Z. Y.; Duan, X. F.; Heinz, H.; Huang, Y.; De Yoreo, J. J. Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. Science 2018, 362, 1135–1139.

    CAS  Google Scholar 

  30. Heo, K.; Jin, H. E.; Kim, H.; Lee, J. H.; Wang, E.; Lee, S. W. Transient self-templating assembly of M13 bacteriophage for enhanced biopiezoelectric devices. Nano Energy 2019, 56, 716–723.

    CAS  Google Scholar 

  31. Chen, P. Y.; Hyder, M. N.; Mackanic, D.; Courchesne, N. M. D.; Qi, J. F.; Klug, M. T.; Belcher, A. M.; Hammond, P. T. Assembly of viral hydrogels for three-dimensional conducting nanocomposites. Adv. Mater. 2014, 26, 5101–5107.

    CAS  Google Scholar 

  32. Zhu, E. B.; Wang, S. Y.; Yan, X. C.; Sobani, M.; Ruan, L. Y.; Wang, C.; Liu, Y.; Duan, X. F.; Heinz, H.; Huang, Y. Long-range hierarchical nanocrystal assembly driven by molecular structural transformation. J. Am. Chem. Soc. 2019, 141, 1498–1505.

    CAS  Google Scholar 

  33. Lee, J.; Ju, M. S.; Cho, O. H.; Kim, Y.; Nam, K. T. Tyrosine-rich peptides as a platform for assembly and material synthesis. Adv. Sci. 2019, 6, 1801255.

    Google Scholar 

  34. Chang, J. Y.; Wu, H. M.; Chen, H.; Ling, Y. C.; Tan, W. H. Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 2005, 1092–1094.

  35. Ruan, L. Y.; Zhu, E. B.; Chen, Y.; Lin, Z. Y.; Huang, X. Q.; Duan, X. F.; Huang, Y. Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. Angew. Chem., Int. Ed. 2013, 52, 12577–12581.

    CAS  Google Scholar 

  36. Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393–399.

    CAS  Google Scholar 

  37. Li, Y. J.; Huang, Y. Morphology-controlled synthesis of platinum nanocrystals with specific peptides. Adv. Mater. 2010, 22, 1921–1925.

    CAS  Google Scholar 

  38. Ruan, L. Y.; Ramezani-Dakhel, H.; Lee, C.; Li, Y. J.; Duan, X. F.; Heinz, H.; Huang, Y. A rational biomimetic approach to structure defect generation in colloidal nanocrystals. ACS Nano 2014, 8, 6934–6944.

    CAS  Google Scholar 

  39. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  40. Heinz, H.; Lin, T. J.; Kishore Mishra, R.; Emami, F. S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The interface force field. Langmuir 2013, 29, 1754–1765.

    CAS  Google Scholar 

  41. Heinz, H.; Vaia, R. A.; Farmer, B. L.; Naik, R. R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J. Phys. Chem. C 2008, 112, 17281–17290.

    CAS  Google Scholar 

  42. Stamenković, V.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.

    Google Scholar 

  43. Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 2001, 495, 134–145.

    CAS  Google Scholar 

  44. Lopes, P. P.; Tripkovic, D.; Martins, P. F. B. D.; Strmcnik, D.; Ticianelli, E. A.; Stamenkovic, V. R.; Markovic, N. M. Dynamics of electrochemical Pt dissolution at atomic and molecular levels. J. Electroanal. Chem. 2018, 819, 123–129.

    CAS  Google Scholar 

Download references

Acknowledgements

E. Z. and Y. H. acknowledge the Electron Imaging Center of Nanomachines at University of California, Los Angeles for TEM support. Y. H. acknowledges support from the Office of Naval Research under grant number N000141812491 and National Science Foundation DMREF 1437263. S. W. and H. H. acknowledge support by the National Science Foundation (DMREF 1623947, CBET 1530790, OAC 1931587, and CMMI 1940335). The allocation of computational resources is acknowledged at the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC02-06CH11357, and at the Summit supercomputer supported by the National Science Foundation (ACI-1532235 and ACI-1532236). The authors declare no competing financial interests. Use of beamline ISS 8-ID of the National Synchrotron Light Source (NSLS) II was supported by the NSLS-II, Brookhaven National Laboratory, under U.S. DOE Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hendrik Heinz or Yu Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, E., Xue, W., Wang, S. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 13, 3310–3314 (2020). https://doi.org/10.1007/s12274-020-3007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3007-2

Keywords

Navigation