Skip to main content
Log in

Printable elastic silver nanowire-based conductor for washable electronic textiles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Printable elastic conductors promote the wide application of consumable electronic textiles (e-textiles) for pervasive healthcare monitoring and wearable computation. To assure a clean appearance, the e-textiles require a washing process to clean up the dirt after daily use. Thus, it is crucial to develop low-cost printable elastic conductors with strong adhesion to the textiles. Here, we report a composite elastic conductor based on Ag nanowires (NWs) and polyurethane elastomer. The composite could be dispersed into ink and easily printed onto textiles. One-step print could form robust conductive coatings without sealing on the textiles. Interestingly, the regional concentration of Ag NWs within the polyurethane matrix was observed during phase inversion, endowing the elastic conductor with a low percolation threshold of 0.12 vol.% and high conductivity of 3,668 S·cm−1. Thanks to the high adhesion of the elastic conductors, the resulted e-textiles could withstand repeated stretching, folding, and machine washing (20 times) without obvious performance decay, which reveals its potential application in consumable e-textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, W.; Chen, P. N.; He, S. S.; Sun, X. M.; Peng, H. S. Smart electronic textiles. Angew. Chem., Int. Ed.2016, 55, 6140–6169.

    Article  CAS  Google Scholar 

  2. Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science2009, 325, 977–981.

    Article  CAS  Google Scholar 

  3. Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater.2017, 16, 834–840.

    Article  CAS  Google Scholar 

  4. Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature2008, 454, 748–753.

    Article  CAS  Google Scholar 

  5. Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature2013, 497, 95–99.

    Article  CAS  Google Scholar 

  6. Pan, S. W.; Yang, Z. B.; Chen, P. N.; Deng, J.; Li, H. P.; Peng, H. S. Wearable solar cells by stacking textile electrodes. Angew. Chem., Int. Ed.2014, 126, 6224–6228.

    Article  Google Scholar 

  7. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater.2014, 26, 5310–5336.

    Article  CAS  Google Scholar 

  8. Li, Z.; Xu, Z.; Liu, Y. J.; Wang, R.; Gao, C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat. Commun.2016, 7, 13684.

    Article  CAS  Google Scholar 

  9. Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater.2016, 28, 10267–10274.

    Article  CAS  Google Scholar 

  10. Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science2008, 321, 1468–1472.

    Article  CAS  Google Scholar 

  11. Chun, K. Y.; Oh, Y.; Rho, J. H.; Ahn, J. H.; Kim, Y. J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol.2010, 5, 853–857.

    Article  CAS  Google Scholar 

  12. Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun.2015, 6, 7461.

    Article  CAS  Google Scholar 

  13. Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater.2015, 27, 1480–1511.

    Article  CAS  Google Scholar 

  14. Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Graphene/elastomer nanocomposites. Carbon2015, 95, 460–484.

    Article  CAS  Google Scholar 

  15. Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z. L.; Ferreira, M. S.; Möbius, M. E. et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science2016, 354, 1257–1260.

    Article  CAS  Google Scholar 

  16. Pelíšková, M.; Piyamanocha, P.; Prokeš, J.; Varga, M.; Sáha, P. The electrical conductivity of ethylene butyl-acrylate/carbon black composites: The effect of foaming on the percolation threshold. Synth. Met. 2014, 188, 140–145.

    Google Scholar 

  17. Chen, Z.; Pfattner, R.; Bao, Z. N. Characterization and understanding of thermoresponsive polymer composites based on spiky nanostructured fillers. Adv. Electron. Mater.2017, 3, 1600397.

    Article  Google Scholar 

  18. Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure-and flexionsensitive properties for electronic skin applications. Nat. Nanotechnol.2012, 7, 825–832.

    Article  CAS  Google Scholar 

  19. Nan, C. W.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res.2010, 40, 131–151.

    Article  CAS  Google Scholar 

  20. Bartlett, M. D.; Fassler, A.; Kazem, N.; Markvicka, E. J.; Mandal, P.; Majidi, C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater.2016, 28, 3726–3731.

    Article  CAS  Google Scholar 

  21. Qin, Q. Q.; Yin, S.; Cheng, G. M.; Li, X. Y.; Chang, T. H.; Richter, G.; Zhu, Y.; Gao, H. J. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun.2015, 6, 5983.

    Article  CAS  Google Scholar 

  22. Zhu, Y. Mechanics of crystalline nanowires: An experimental perspective. Appl. Mech. Rev.2017, 69, 010802.

    Article  Google Scholar 

  23. Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano2015, 9, 6626–6633.

    Article  CAS  Google Scholar 

  24. Park, M.; Park, J.; Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today2014, 9, 244–260.

    Article  CAS  Google Scholar 

  25. Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R. Polymer Handbook; 3rd ed. Wiley: New York, 1989.

    Google Scholar 

  26. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature1997, 389, 827–829.

    Article  CAS  Google Scholar 

  27. Thongruang, W.; Balik, C. M.; Spontak, R. J. Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber. J. Polym. Sci. Part B Pol. Phys.2002, 40, 1013–1025.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51732011, 21431006, 21761132008, 81788101, and 11227901), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (No. QYZDJ-SSW-SLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007). This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hong Yu.

Electronic Supplementary Material

Printable elastic silver nanowire-based conductor for washable electronic textiles

Supplementary material, approximately 16.9 MB.

Supplementary material, approximately 16.0 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HW., Gao, HL., Zhao, HY. et al. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 13, 2879–2884 (2020). https://doi.org/10.1007/s12274-020-2947-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2947-x

Keywords

Navigation