Skip to main content
Log in

Molecular-scale integrated multi-functions for organic light-emitting transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic light-emitting transistors (OLETs) integrate the functions of light-emitting diodes and field-effect transistors into a unique device, opening a new door for optoelectronics. However, there is still a challenge due to the absence of high quality organic semiconductors for OLETs. Herein, we reported a novel molecule 2,6-di(anthracen-2-yl)naphthalene (2,6-DAN), which exhibited mobility of up to 19 cm2·V−1·s−1 and an absolute fluorescence quantum yield of 37.09%, which are good values for organic semiconductors. Moreover, OLETs based on 2,6-DAN single crystals showed bright yellowish-green emission and well-balanced ambipolar charge transport. The excellent ratio of hole to electron mobility can reach up to 0.86, which is superior to most single-component OLETs in typical device configurations reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melzer, C.; von Seggern, H. Enlightened organic transistors. Nat. Mater.2010, 9, 470–472.

    Article  CAS  Google Scholar 

  2. Smits, E. C. P.; Setayesh, S.; Anthopoulos, T. D.; Buechel, M.; Nijssen, W.; Coehoorn, R.; Blom, P. W. M.; de Boer, B.; de Leeuw, D. M. Near-infrared light-emitting ambipolar organic field-effect transistors. Adv. Mater.2007, 19, 734–738.

    Article  CAS  Google Scholar 

  3. Zaumseil, J.; Donley, C. L.; Kim, J. S.; Friend, R. H.; Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater.2006, 18, 2708–2712.

    Article  CAS  Google Scholar 

  4. Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater.2006, 5, 69–74.

    Article  CAS  Google Scholar 

  5. Cicoira, F.; Santato, C. Organic light emitting field effect transistors: Advances and perspectives. Adv. Funct. Mater.2007, 17, 3421–3434.

    Article  CAS  Google Scholar 

  6. Li, J.; Zhou, K.; Liu, J.; Zhen, Y. G.; Liu, L.; Zhang, J. D.; Dong, H. L.; Zhang, X. T.; Jiang, L.; Hu, W. P. Aromatic extension at 2,6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J. Am. Chem. Soc.2017, 139, 17261–17264.

    Article  CAS  Google Scholar 

  7. Dadvand, A.; Moiseev, A. G.; Sawabe, K.; Sun, W. H.; Djukic, B.; Chung, I.; Takenobu, T.; Rosei, F.; Perepichka, D. F. Maximizing field-effect mobility and solid-state luminescence in organic semiconductors. Angew. Chem., Int. Ed.2012, 51, 3837–3841.

    Article  CAS  Google Scholar 

  8. Ju, H. J.; Wang, K.; Zhang, J.; Geng, H.; Liu, Z. T.; Zhang, G. X.; Zhao, Y. S.; Zhang, D. Q. 1,6- and 2,7-trans-β-styryl substituted pyrenes exhibiting both emissive and semiconducting properties in the solid state. Chem. Mater.2017, 29, 3580–3588.

    Article  CAS  Google Scholar 

  9. Gwinner, M. C.; Kabra D.; Roberts, M.; Brenner, T. J. K.; Wallikewitz, B. H.; McNeill, C. R.; Friend, R. H.; Sirringhaus, H. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater.2012, 24, 2728–2734.

    Article  CAS  Google Scholar 

  10. Park, S. K.; Kim, J. H.; Ohto, T.; Yamada, R.; Jones, A. O. F.; Whang, D. R.; Cho, I.; Oh, S.; Hong, S. H.; Kwon, J. E. et al. Highly luminescent 2D-type slab crystals based on a molecular chargetransfer complex as promising organic light-emitting transistor materials. Adv. Mater.2017, 29, 1701346.

    Article  Google Scholar 

  11. Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater.2018, 30, 1801048.

    Article  Google Scholar 

  12. Hoeben, F. J. M.; Jonkheijm, M. P.; Meijer, E. W.; Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems. Chem. Rev.2005, 105, 1491–1546.

    Article  CAS  Google Scholar 

  13. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev.2007, 107, 1339–1386.

    Article  CAS  Google Scholar 

  14. Liu, Z. T.; Zhang, G. X.; Zhang, D. Q. Molecular materials that can both emit light and conduct charges: Strategies and perspectives. Chem.—c>Eur. J.2016, 22, 462–471.

    CAS  Google Scholar 

  15. Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev.2018, 47, 7452–7476.

    Article  CAS  Google Scholar 

  16. Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science2004, 303, 1644–1646.

    Article  CAS  Google Scholar 

  17. Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. Fluorescence quantum yield of aromatic hydrocarbon crystals. J. Phys. Chem. C2009, 113, 2961–2965.

    Article  CAS  Google Scholar 

  18. Aleshin, A. N. Lee, J. Y.; Chu, S. W.; Kim, J. S.; Park, Y. W. Mobility studies of field-effect transistor structures basedon anthracene single crystals. Appl. Phys. Lett.2004, 84, 5383–5385.

    Article  CAS  Google Scholar 

  19. Mei, J. G.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. N. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc.2013, 135, 6724–6746.

    Article  CAS  Google Scholar 

  20. da Silva Filho, D. A.; Kim, E. G.; Brédas, J. L. Transport properties in the rubrene crystal: Electronic coupling and vibrational reorganization energy. Adv. Mater.2005, 17, 1072–1076.

    Article  Google Scholar 

  21. Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th Anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater.2013, 25, 6158–6183.

    Article  CAS  Google Scholar 

  22. Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev.2006, 106, 5028–5048.

    Article  CAS  Google Scholar 

  23. Wang, C. L.; Dong, H. L.; Jiang, L.; Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev.2018, 47, 422–500.

    Article  CAS  Google Scholar 

  24. Smits, E. C. P.; Mathijssen, S. G. J.; van Hal, P. A.; Setayesh, S.; Geuns, T. C.; Mutsaers, K. A. H. A.; Cantatore, E.; Wondergem, H. J.; Werzer, O.; Resel, R. et al. Bottom-up organic integrated circuits. Nature2008, 455, 956–959.

    Article  CAS  Google Scholar 

  25. Ruiz, R.; Papadimitratos, A.; Mayer, A. C.; Malliaras, G. G. Thickness dependence of mobility in pentacene thin-film transistors. Adv. Mater.2005, 17, 1795–1798.

    Article  CAS  Google Scholar 

  26. Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. Y. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun.2018, 9, 2933.

    Article  Google Scholar 

  27. Tang, Q. X.; Jiang, L.; Tong, Y. H.; Li, H. X.; Liu, Y. L.; Wang, Z. H.; Hu, W. P.; Liu, Y. Q.; Zhu. D. B. Micrometer-and nanometer-sized organic single-crystalline transistors. Adv. Mater.2008, 20, 2947–2951.

    Article  CAS  Google Scholar 

  28. Greiner, M. T.; Chai, L.; Helander, M. G.; Tang, W. M.; Lu, Z. H. Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater.2013, 23, 215–226.

    Article  CAS  Google Scholar 

  29. Baeg, K. J.; Kim, J.; Khim, D.; Caironi, M.; Kim, D. Y. You, I. K.; Quinn, J.; Facchetti, R. A.; Noh, Y. Y. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. ACS Appl. Mater. Interfaces2011, 3, 3205–3214.

    Article  CAS  Google Scholar 

  30. Qin, Z. S.; Gao, H. K.; Liu, J. Y.; Zhou, K.; Li, J.; Dang, Y. Y.; Huang, L.; Deng, H. X.; Zhang, X. T.; Dong, H. L. et al. High-efficiency single-component organic light-emitting transistors. Adv. Mater.2019, 31, 1903175.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0204503 and 2016YFB0401100), and the National Natural Science Foundation of China (Nos. 91833306, 21875158, 51633006, 51703159, 51725304, and 51733004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotao Zhang, Huanli Dong or Wenping Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Li, J., Zhou, K. et al. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 13, 1976–1981 (2020). https://doi.org/10.1007/s12274-020-2851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2851-4

Keywords

Navigation