Skip to main content
Log in

Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Up-conversion photoluminescence (UCPL) refers to the elementary process where low-energy photons are converted into high-energy ones via consecutive interactions inside a medium. When additional energy is provided by internal thermal energy in the form of lattice vibrations (phonons), the process is called phonon-assisted UCPL. Here, we report the exceptionally large phonon-assisted energy gain of up to ~ 8kBT (kB is Boltzmann constant, T is temperature) on all-inorganic lead halide perovskite semiconductor colloidal nanocrystals that goes beyond the maximum capability of only harvesting optical phonon modes. By systematic optical study in combination with a statistical probability model, we explained the nontrivial phonon-assisted UCPL process in perovskites nanocrystals, where in addition to the strong electron-phonon (light-matter) coupling, other nonlinear processes such as phonon-phonon (matter-matter) interaction also effectively boost the up-conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G. Up-conversion fluorescence: Noncoherent excitation by sunlight. Phys. Rev. Lett.2006, 97, 143903.

    CAS  Google Scholar 

  2. Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol.2015, 10, 924–936.

    CAS  Google Scholar 

  3. Boyd, R. W. Nonlinear Optics, 2nd ed.; Academic Press: Rochester, New York, 2003.

    Google Scholar 

  4. Wu, M. F.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulovíc, V.; Bawendi, M. G.; Baldo, M. A. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics2016, 10, 31–34.

    CAS  Google Scholar 

  5. Kaiser, W.; Garrett, C. G. B. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett.1961, 7, 229–231.

    CAS  Google Scholar 

  6. Shalav, A.; Richards, B. S.; Trupke, T.; Krämer, K. W.; Güdel, H. U. Application of NaYF4:Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response. Appl. Phys. Lett.2005, 86, 013505.

    Google Scholar 

  7. Mauser, N.; Piatkowski, D.; Mancabelli, T.; Nyk, M.; Mackowski, S.; Hartschuh, A. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals. ACS Nano2015, 9, 3617–3626.

    CAS  Google Scholar 

  8. Yamamoto, K.; Fuji, M.; Sowa, S.; Imakita, K.; Aoki, K. Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap. J. Phys. Chem. C2015, 119, 1175–1179.

    CAS  Google Scholar 

  9. Prasad, P. N.; Bhawalkar, J. D.; He, G. S.; Zhao, C. F.; Gvishi, R.; Ruland, G. E.; Zieba, J.; Cheng, P. C.; Pan, S. J. Two-photon upconverting dyes and applications. U.S. Patent 5,912,257, June 15, 1999.

    Google Scholar 

  10. Chen, G. Y.; Damasco, J.; Qiu, H. L.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. H. et al. Energycascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett.2015, 15, 7400–7407.

    CAS  Google Scholar 

  11. Yang, H. R.; Han, C. M.; Zhu, X. J.; Liu, Y.; Zhang, K. Y.; Liu, S. J.; Zhao, Q.; Li, F. Y.; Huang, W. Upconversion luminescent chemodosimeter based on NIR organic dye for monitoring methylmercuryin vivo. Adv. Funct. Mater.2016, 26, 1945–1953.

    CAS  Google Scholar 

  12. Akizuki, N.; Aota, S.; Mouri, S.; Matsuda, K.; Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun.2015, 6, 8920.

    CAS  Google Scholar 

  13. Zhang, J.; Li, D. H.; Chen, R. J.; Xiong, Q. H. Laser cooling of a semiconductor by 40 Kelvin. Nature2013, 493, 504–508.

    CAS  Google Scholar 

  14. Zhang, Q.; Liu, X. F.; Utama, M. I. B.; Xing, G. C.; Sum, T. C.; Xiong, Q. H. Phonon-assisted anti-Stokes lasing in ZnTe nanoribbons. Adv. Mater.2016, 28, 276–283.

    CAS  Google Scholar 

  15. Wang, X. Y.; Yu, W. W.; Zhang, J. Y.; Aldana, J.; Peng, X. G.; Xiao, M. Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B2003, 68, 125318.

    Google Scholar 

  16. Chen, W.; Joly, A. G.; McCready, D. E. Upconversion luminescence from CdSe nanoparticles. J. Chem. Phys.2005, 122, 224708.

    Google Scholar 

  17. Jakubek, Z. J.; DeVries, J.; Lin, S. Q.; Ripmeester, J.; Yu, K. Exciton recombination and upconverted photoluminescence in colloidal CdSe quantum dots. J. Phys. Chem. C2008, 112, 8153–8158.

    CAS  Google Scholar 

  18. Deutsch, Z.; Neeman, L.; Oron, D. Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol.2013, 8, 649–653.

    CAS  Google Scholar 

  19. Teitelboim, A.; Oron, D. Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures. ACS Nano2016, 10, 446–452.

    CAS  Google Scholar 

  20. Ha, S. T.; Shen, C.; Zhang, J.; Xiong, Q. H. Laser cooling of organicinorganic lead halide perovskites. Nat. Photonics2016, 10, 115–121.

    CAS  Google Scholar 

  21. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc.2009, 131, 6050–6051.

    CAS  Google Scholar 

  22. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science2012, 338, 643–647.

    CAS  Google Scholar 

  23. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science2013, 342, 341–344.

    CAS  Google Scholar 

  24. Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Roomtemperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett.2014, 14, 5995–6001.

    CAS  Google Scholar 

  25. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 2014, 9, 687–692.

    CAS  Google Scholar 

  26. Shin, J.; Kim, M.; Jung, S.; Kim, C. S.; Park, J.; Song, A.; Chung, K. B.; Jin, S. H.; Lee, J. H.; Song M. Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res.2018, 11, 6283–6293.

    CAS  Google Scholar 

  27. Dagar, J; Castro-Hermosa, S.; Gasbarri, M.; Palma, A. L.; Cina, L.; Matteocci, F.; Calabrò, E.; Di Carlo, A.; Brown, T. M. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res.2018, 11, 2669–2681.

    CAS  Google Scholar 

  28. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett.2015, 15, 3692–3696.

    CAS  Google Scholar 

  29. Akkerman, Q. A.; D’innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc.2015, 137, 10276–10281.

    CAS  Google Scholar 

  30. Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed.2016, 55, 13887–13892.

    CAS  Google Scholar 

  31. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett.2015, 15, 5635–5640.

    CAS  Google Scholar 

  32. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun.2015, 6, 8056.

    CAS  Google Scholar 

  33. Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett.2016, 16, 2349–2362.

    CAS  Google Scholar 

  34. García-Santamaría, F.; Brovelli, S.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Crooker, S. A.; Klimov, V. I. Breakdown of volume scaling in auger recombination in CdSe/CdS heteronanocrystals: The role of the core-shell interface. Nano Lett.2011, 11, 687–693.

    Google Scholar 

  35. Eilers, J.; van Hest, J.; Meijerink, A.; de Mello Donega, C. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots. J. Phys. Chem. C2014, 118, 23313–23319.

    CAS  Google Scholar 

  36. Granados del Águila, A.; Groeneveld, E.; Maan, J. C.; de Mello Donegá, C.; Christianen, P. C. M. Effect of electron-hole overlap and exchange interaction on exciton radiative lifetimes of CdTe/CdSe heteronanocrystals. ACS Nano2016, 10, 4102–4110.

    Google Scholar 

  37. Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.; Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett.2003, 82, 2793–2795.

    CAS  Google Scholar 

  38. de Mello Donegá, C.; Bode, M; Meijerink, A. Size- and temperaturedependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B2006, 74, 085320.

  39. Rakovich, Y. P.; Donegan, J. F.; Vasilevskiy, M. I.; Rogach, A. L. Anti-Stokes cooling in semiconductor nanocrystal quantum dots: A feasibility study. Phys. Status Solidi A2009, 206, 2497–2509.

    CAS  Google Scholar 

  40. Sebastian, M.; Peters, J. A.; Stoumpos, C. C.; Im, J.; Kostina, S. S.; Liu, Z.; Kanatzidis, M. G.; Freeman, A. J.; Wessels, B. W. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys. Rev. B2015, 92, 235210.

  41. Li, J. M.; Yuan, X.; Jing, P. T.; Li, J.; Wei, M. B.; Hua, J.; Zhao, J. L.; Tian, L. H. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv.2016, 6, 78311–78316.

    CAS  Google Scholar 

  42. Wei, K.; Xu, Z. J.; Chen, R. Z.; Zheng, X.; Cheng, X. A.; Jiang, T. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett.2016, 41, 3821–3824.

    CAS  Google Scholar 

  43. Do, T. T. H.; Granados del Águila, A.; Cui, C.; Xing, J.; Ning, Z. J.; Xiong, Q. H. Optical study on intrinsic exciton states in high-quality CH3NH3PbBr3 single crystals. Phys. Rev. B2017, 96, 075308.

    Google Scholar 

  44. Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Stacey, A.; McCallum, J.; Greentree, A. D.; Prawer, S. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett.2009, 9, 3191–3195.

    CAS  Google Scholar 

  45. Xiong, Y. D.; Liu, C.; Wang, J.; Han, J. J.; Zhao, X. J. Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses. Opt. Express2017, 25, 6874–6882.

    CAS  Google Scholar 

  46. Calistru, D. M.; Mihut, L.; Lefrant, S.; Baltog, I. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J. Appl. Phys.1997, 82, 5391–5395.

    CAS  Google Scholar 

  47. Yaffe, O.; Guo, Y. S.; Tan, L. Z.; Egger, D. A.; Hull, T.; Stoumpos, C. C.; Zheng, F.; Heinz, T. F.; Kronik, L.; Kanatzidis, M. G. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett.2017, 118, 136001.

    Google Scholar 

  48. Yang, J. F.; Wen, X. M.; Xia, H. Z.; Sheng, R.; Ma, Q. S.; Kim, J.; Tapping, P.; Harada, T.; Kee, T. W.; Huang, F. et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun.2017, 8, 14120.

    CAS  Google Scholar 

  49. Hu, Y. Z.; Koch, S. W.; Lindberg, M.; Peyghambarian, N.; Pollock, E. L.; Abraham, F. F. Biexcitons in semiconductor quantum dots. Phys. Rev. Lett.1990, 64, 1805–1807.

    CAS  Google Scholar 

  50. Yang, Y.; Ostrowski, D. P.; France, R. M.; Zhu, K.; van de Lagemaat, J.; Luther, J. M.; Beard, M. C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics2016, 10, 53–59.

    CAS  Google Scholar 

  51. Von der Linde, D.; Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett.1979, 42, 1090–1093.

    Google Scholar 

  52. Zanato, D.; Balkan, N.; Ridley, B.; Hill, G.; Schaff, W. J. Hot electron cooling rates via the emission of LO-phonons in InN. Semicond. Sci. Technol.2004, 19, 1024–1028.

    CAS  Google Scholar 

  53. Klimov, V. I.; McBranch, D. W. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett.1998, 80, 4028–4031.

    CAS  Google Scholar 

  54. Acherman, M.; Bartko, A. P.; Hollingsworth, J. A.; Klimov, V. I. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys.2006, 2, 557–561.

    Google Scholar 

  55. Gao, Y.; Talgorn, E.; Aerts, M.; Trinh, M. T.; Schins, J. M.; Houtepen, A. J.; Siebbeles, L. D. A. Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. Nano Lett.2011, 11, 5471–5476.

    CAS  Google Scholar 

  56. Maity, P.; Debnath, T.; Ghosh, H. N. Slow electron cooling dynamics mediated by electron-hole decoupling in highly luminescent CdSxSe1−x alloy quantum dots. J. Phys. Chem. C2015, 119, 10785–10792.

    CAS  Google Scholar 

  57. Scamarcio, G.; Spagnolo, V.; Ventruti, G.; Lugará, M.; Righini, G. C. Size dependence of electron-LO-phonon coupling in semiconductor nanocrystals. Phys. Rev. B1996, 53, R10489(R).

    Google Scholar 

  58. Zhang Q.; Liu, X. F.; Utama, M. I., B.; Zhang J.; de la Mata, M.; Arbiol, J.; Lu, Y. H.; Sum, T. C.; Xiong, Q. H. Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt. Nano Lett.2012, 12, 6320–6427.

    Google Scholar 

  59. Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc.2017, 139, 13525–13532.

    CAS  Google Scholar 

  60. Khurgin J. B. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration. Appl. Phys. Lett.2014, 104, 221115.

    Google Scholar 

  61. Joly, A. G.; Chen, W.; McCready, D. E.; Malm, J. O.; Bovin, J. O. Upconversion luminescence of CdTe nanoparticles. Phys. Rev. B2005, 71, 165304.

    Google Scholar 

  62. De Paula, A. M.; Barbosa, L. C.; Cruz, C. H. B.; Alves, O. L.; Sanjurjo, J. A.; Cesar, C. L. Quantum confinement effects on the optical phonons of CdTe quantum dots. Superlattice Microst.1998, 23, 1103–1106.

    Google Scholar 

  63. Bruchhausen, A.; Fainstein, A.; Jusserand, B.; André, R. Resonant Raman scattering by CdTe quantum-well-confined optical phonons in a semiconductor microcavity. Phys. Rev. B2006, 73, 085305.

    Google Scholar 

  64. Lange, H.; Artemyev, M.; Woggon, U.; Thomsen, C. Geometry dependence of the phonon modes in CdSe nanorods. Nanotechnology2008, 20, 045705.

    Google Scholar 

  65. Lin, C.; Kelley, D. F.; Rico, M.; Kelley, A. M. The “surface optical” phonon in CdSe nanocrystals. ACS Nano2014, 8, 3928–3938.

    CAS  Google Scholar 

  66. Granados del Águila, A.; Jha, B.; Pietra, F.; Groeneveld, E.; de Mello Donegá, C.; Maan, J. C.; Vanmaekelbergh, D.; Christianen, P. C. M. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals. ACS Nano2014, 8, 5921–5931.

    Google Scholar 

  67. Rawalekar, S.; Kaniyankandy, S.; Verma, S.; Ghosh, H. N. Ultrafast charge carrier relaxation and charge transfer dynamics of CdTe/CdS core-shell quantum dots as studied by femtosecond transient absorption spectroscopy. J. Phys. Chem. C2010, 114, 1460–1466.

    CAS  Google Scholar 

  68. Eshlaghi, S.; Worthoff, W.; Wieck, A. D.; Suter, D. Luminescence upconversion in GaAs quantum wells. Phys. Rev. B2008, 77, 245317.

    Google Scholar 

  69. Ye, S.; Zhao, M. J.; Yu, M. H.; Zhu, M.; Yan, W.; Song, J.; Qu, J. L. Mechanistic investigation of upconversion photoluminescence in all-inorganic perovskite CsPbBrI2 nanocrystals. J. Phys. Chem. C2018, 122, 3152–3156.

    CAS  Google Scholar 

  70. Ma, X. M.; Pan, F.; Li, H. Q.; Shen, P.; Ma, C.; Zhang, L.; Niu, H. B.; Zhu, Y. Z.; Xu, S. J.; Ye, H. G. Mechanism of single-photon upconversion photoluminescence in all-inorganic perovskite nanocrystals: The role of self-trapped excitons. J. Phys. Chem. Lett.2019, 10, 5989–5996.

    CAS  Google Scholar 

  71. Roman, B. J.; Sheldon, M. The role of mid-gap states in all-inorganic CsPbBr3 nanoparticle one photon up-conversion. Chem. Commun.2018, 54, 6851–6854.

    CAS  Google Scholar 

  72. Shin, S.; Kaviany, M. Optical phonon production by upconversion: Heterojunction-transmitted versus native phonons. Phys. Rev. B2015, 91, 165310.

    Google Scholar 

  73. Caretta, A.; Donker, M. C.; Perdok, D. W.; Abbaszadeh, D.; Polyakov, A. O.; Havenith, R. W. A.; Palstra, T. T. M.; van Loosdrecht, P. H. M. Measurement of the acoustic-to-optical phonon coupling in multicomponent systems. Phys. Rev. B2015, 91, 054111.

    Google Scholar 

  74. Pisoni, A.; Jacimović, J.; Barišić, O. S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett.2014, 5, 2488–2492.

    CAS  Google Scholar 

  75. Yue, S. Y.; Zhang, X. L.; Qin, G. Z.; Yang, J. Y.; Hu, M. Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells. Phys. Rev. B2016, 94, 115427.

    Google Scholar 

  76. Elbaz, G. A.; Ong, W. L.; Doud, E. A.; Kim, P.; Paley, D. W.; Roy, X.; Malen, J. A. Phonon speed, not scattering, differentiates thermal transport in lead halide perovskites. Nano Lett.2017, 17, 5734–5739.

    CAS  Google Scholar 

  77. Tritt, T. M. Thermal Conductivity: Theory, Properties, and Applications; Springer Science & Business Media: New York, 2005.

    Google Scholar 

  78. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science2016, 354, 92–95.

    CAS  Google Scholar 

Download references

Acknowledgements

Q. X. gratefully acknowledges financial support from the Singapore National Research Foundation through the NRF Investigatorship Award (No. NRF-NRFI2015-03) and the Singapore Ministry of Education via AcRF Tier 3 Programme (No. MOE2018-T3-1-002), Tier 2 grant (No. MOE2018-T2-2-068)and Tier 1 grants (Nos. RG103/15 and RG113/16). A. G. D. A. gratefully acknowledges the financial support of the Presidential Postdoctoral Fellowship program of the Nanyang Technological University. We acknowledge Dr. Lulu Zhang for his help on the TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Xiong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados del Águila, A., Do, T.T.H., Xing, J. et al. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 13, 1962–1969 (2020). https://doi.org/10.1007/s12274-020-2840-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2840-7

Keywords

Navigation