Skip to main content
Log in

Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rational design of highly active and stable atomically dispersed M-X4 (M = Fe, Co, Ni, etc., X = C, N) -based catalysts holds promises for wide application in almost all realms of catalysis. Despite great effort in the construction of specific M-X4 centers, the possible effect of non-coordinated heteroatoms on the catalytic activity of metal centers has been rarely explored. Herein, we develop a new type of M-X4 catalyst composed of Fe-N4 centers and non-coordinated B heteroatoms (FeNC+B) and find the key role of non-coordinated B adjacent to Fe-N4 centers in tailoring their electron density and final catalytic selectivity. The experimental and theoretical results demonstrated that non-coordinated boron atoms could decrease the electron density of Fe-N4 centers to a suitable level and thus boost the selective production of nitriles from amine oxidation by depressing the formation of imines due to the flattened energy barrier of the reversible conversion of imines back to amines. As a reusable heterocatalyst, the state-of-the-art FeNC+B catalyst provides a turn-over frequency (TOF) value of 21.6 molbenzonitrile·molFe−1·h−1 (100 °C), outpacing that of bench-marked nonnoble-metal-based homogeneous catalyst by a factor of 3.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev.2019, 119, 1806–1854.

    Article  CAS  Google Scholar 

  2. Byon, H. R.; Suntivich, J.; Shao-Horn, Y. Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater.2011, 23, 3421–3428.

    Article  CAS  Google Scholar 

  3. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed.2018, 57, 8525–8529.

    Article  CAS  Google Scholar 

  4. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed.2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  5. Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc.2017, 139, 14889–14892.

    Article  CAS  Google Scholar 

  6. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed.2019, 58, 3511–3515.

    Article  CAS  Google Scholar 

  7. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed.2019, 58, 2321–2325.

    Article  CAS  Google Scholar 

  8. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed.2017, 56, 16086–16090.

    Article  CAS  Google Scholar 

  9. Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed.2015, 54, 14031–14035.

    Article  CAS  Google Scholar 

  10. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal.2018, 1, 63–72.

    CAS  Google Scholar 

  11. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun.2015, 6, 8668.

    Article  CAS  Google Scholar 

  12. Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem2018, 4, 285–297.

    Article  CAS  Google Scholar 

  13. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA2018, 115, 12692–12697.

    Article  CAS  Google Scholar 

  14. Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. G.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal.2018, 1, 870–877.

    Article  CAS  Google Scholar 

  15. Ji, S. F.; Chen, Y. J.; Zhang, Z. D.; Cheong, W. C.; Liu, Z. R.; Wang, D. S.; Li, Y. D. Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. Nanoscale Horiz.2019, 4, 902–906.

    Article  CAS  Google Scholar 

  16. Lv, L. B.; Yang, S. Z.; Ke, W. Y.; Wang, H. H.; Zhang, B.; Zhang, P. F.; Li, X. H.; Chisholm, M. F.; Chen, J. S. Mono-atomic Fe centers in nitrogen/carbon monolayers for liquid-phase selective oxidation reaction. ChemCatChem2018, 10, 3539–3545.

    Article  CAS  Google Scholar 

  17. Su, H.; Gao, P.; Wang, M. Y.; Zhai, G. Y.; Zhang, J. J.; Zhao, T. J.; Su, J.; Antonietti, M.; Li, X. H.; Chen, J. S. Grouping effect of single Ni-N4 sites in Nitrogen-doped carbon boosts hydrogen transfer coupling of alcohols and amines. Angew. Chem., Int. Ed.2018, 57, 15194–15198.

    Article  CAS  Google Scholar 

  18. Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q. et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem., Int. Ed.2018, 57, 11262–11266.

    Article  CAS  Google Scholar 

  19. Wang, S. H.; Shang, L.; Li, L. L.; Yu, Y. J.; Chi, C. W.; Wang, K.; Zhang, J.; Shi, R.; Shen, H. Y.; Waterhouse, G. I. N. et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater.2016, 28, 8379–8387.

    Article  CAS  Google Scholar 

  20. Liu, Y. X.; Wang, H. H.; Zhao, T. J.; Zhang, B.; Su, H.; Xue, Z. H.; Li, X. H.; Chen, J. S. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: In-built Lewis acid-base pairs for highly efficient CO2 fixation. J. Am. Chem. Soc.2019, 141, 38–41.

    Article  CAS  Google Scholar 

  21. Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Activating cobalt nanoparticles via the Mott-Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J. Am. Chem. Soc.2017, 139, 811–818.

    Article  CAS  Google Scholar 

  22. Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogencodoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed.2013, 52, 4572–4576.

    Article  CAS  Google Scholar 

  23. Zhang, K. X.; Su, H.; Wang, H. H.; Zhang, J. J.; Zhao, S. Y.; Lei, W. W.; Wei, X.; Li, X. H.; Chen, J. S. Atomic-scale Mott-Schottky heterojunctions of boron nitride monolayer and graphene as metal-free photocatalysts for artificial photosynthesis. Adv. Sci.2018, 5, 1800062.

    Article  Google Scholar 

  24. Berteotti, A.; Vacondio, F.; Lodola, A.; Bassi, M.; Silva, C.; Mor, M.; Cavalli, A. Predicting the reactivity of nitrile-carrying compounds with cysteine: A combined computational and experimental study. ACS Med. Chem. Lett.2014, 5, 501–505.

    Article  CAS  Google Scholar 

  25. Burow, M.; Markert, J.; Gershenzon, J.; Wittstock, U. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J.2006, 273, 2432–2446.

    Article  CAS  Google Scholar 

  26. Fleming, F. F.; Yao, L. H.; Ravikumar, P. C.; Funk, L.; Shook, B. C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore. J. Med. Chem.2010, 53, 7902–7917.

    Article  CAS  Google Scholar 

  27. Fang, Z. X.; Chen, Y.; Wang, B. R.; Jiao, S. H; Pang, G. S. Heterostructure Ag@WO3−x composites with high selectivity for breaking azo-bond. Chem. Res. Chin. Univ.2018, 34, 517–522.

    Article  CAS  Google Scholar 

  28. Dutta, I.; Yadav, S.; Sarbajna, A.; De, S.; Hölscher, M.; Leitner, W.; Bera, J. K. Double dehydrogenation of primary amines to nitriles by a ruthenium complex featuring pyrazole functionality. J. Am. Chem. Soc.2018, 140, 8662–8666.

    Article  CAS  Google Scholar 

  29. Oishi, T.; Yamaguchi, K.; Mizuno, N. Catalytic oxidative synthesis of nitriles directly from primary alcohols and ammonia. Angew. Chem., Int. Ed.2009, 48, 6286–6288.

    Article  CAS  Google Scholar 

  30. Martin, A.; Narayana Kalevaru, V.; Lücke, B. Defined vanadium phosphorus oxides and their use as highly effective catalysts in ammoxidation of methyl aromatics. Catal. Today.2003, 78, 311–317.

    Article  CAS  Google Scholar 

  31. Kim, J.; Chang, S. A new combined source of “CN” from N,N-dimethylformamide and ammonia in the palladium-catalyzed cyanation of aryl C–H bonds. J. Am. Chem. Soc.2010, 132, 10272–10274.

    Article  CAS  Google Scholar 

  32. Tseng, K. N. T.; Rizzi, A. M.; Szymczak, N. K. Oxidant-free conversion of primary amines to nitriles. J. Am. Chem. Soc.2013, 135, 16352–16355.

    Article  CAS  Google Scholar 

  33. Hammond, C.; Schümperli, M. T.; Hermans, I. Insights into the oxidative dehydrogenation of amines with nanoparticulate iridium oxide. Chem.—Eur. J.2013, 19, 13193–13198.

    Article  CAS  Google Scholar 

  34. Tseng, K.-N. T.; Szymczak, N. K. Dehydrogenative oxidation of primary amines to nitriles. Synlett.2014, 25, 2385–2389.

    Article  CAS  Google Scholar 

  35. Preger, Y.; Root, T. W.; Stahl, S. S. Platinum-based heterogeneous catalysts for nitrile synthesis via aerobic oxidative coupling of alcohols and ammonia. ACS Omega2018, 3, 6091–6096.

    Article  CAS  Google Scholar 

  36. Wang, Y. Z.; Furukawa, S.; Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal.2019, 9, 6681–6691.

    Article  Google Scholar 

  37. Molla, R. A.; Ghosh, K.; Tuhina, K.; Islam, S. M. An aerobic oxidative synthesis of aryl nitriles and primary aryl amides from benzylic alcohols catalyzed by a polymer supported Cu(II) complex. New J. Chem.2015, 39, 921–930.

    Article  CAS  Google Scholar 

  38. Dornan, L. M.; Cao, Q.; Flanagan, J. C. A.; Crawford, J. J.; Cook, M. J.; Muldoon, M. J. Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant. Chem. Commun.2013, 49, 6030–6032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21722103, 21931005, 21720102002, and 21673140), Shanghai Science and Technology Committee (No. 19JC1412600) and the SJTU-MPI partner group. The authors thank Shanghai Synchrotron Radiation Facility for providing beam time (No. BL14W1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hao Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HH., Lv, LB., Zhang, SN. et al. Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. Nano Res. 13, 2079–2084 (2020). https://doi.org/10.1007/s12274-020-2810-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2810-0

Keywords

Navigation