Skip to main content
Log in

Specific photoacoustic cavitation through nucleus targeted nanoparticles for high-efficiency tumor therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a new type of cancer treatment, photoacoustic (PA) therapy is based on PA shockwave for rapid, selective and effective killing of cancer cells. The nucleus has been widely used as a target for tumor therapy, which has obtained a very considerable therapeutic effect. In situ destruction of tumor cell nucleus by photoacoustic therapy has not been studied. In this paper, a highly efficient nucleus-targeted photoacoustic theranostic polymer was developed for fluorescence and photoacoustic dual-mode imaging-guided PA therapy. The prepared polymer consists of nucleus targeting TAT peptide (TAT: YGRKKRRQRRR), hydrophilic chain poly (N,N-dimethylacrylamide) (PDMA), and near-infrared (NIR) light absorbing agent (hCyR), which can self-assemble to form nanoparticles of approximately 28 nm (denoted as TAT-PDMA-hCyR NPs). The designed nanoparticles show excellent nucleus targeting and tumor cell death (up to 80%) caused by DNA damage under pulsed laser irradiation compared to non-nucleus target counterpart PDMA-hCyR NPs without TAT peptide in vitro. As expected, the fluorescence and PA dual-mode imaging observed that TAT-PDMA-hCyR NPs were able to passively target and enrich in tumors, providing an experimental basis for in vivo treatment and thus ensuring a significant tumor inhibition rate (about 92%). In conclusion, this study provides a new and practicable method for the development of nucleus-targeting nanoparticles as potential theranostic agent for in vivo cancer imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torre, L. A.; Siegel, R. L.; Ward, E. M.; Jemal, A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol., Biomarkers Prev.2016, 25, 16–27.

    Google Scholar 

  2. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2016. CA: Cancer J. Clin.2016, 66, 7–30.

    Google Scholar 

  3. Archer, S. L. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N. Engl. J. Med.2013, 369, 2236–2251.

    CAS  Google Scholar 

  4. Arnoult, D. Mitochondrial fragmentation in apoptosis. Trends Cell. Biol.2007, 17, 6–12.

    CAS  Google Scholar 

  5. Zhang, X.; Ba, Q.; Gu, Z. N.; Guo, D. L.; Zhou, Y.; Xu, Y. G.; Wang, H.; Ye, D. J.; Liu, H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chemistry2015, 21, 17415–17421.

    CAS  Google Scholar 

  6. Dai, L. L.; Cai, R. S.; Li, M. H.; Luo, Z.; Yu, Y. L.; Chen, W. Z.; Shen, X. K.; Pei, Y. X.; Zhao, X. J.; Cai, K. Y. Dual-targeted cascade-responsive prodrug micelle system for tumor therapy in vivo.Chem. Mater.2017, 29, 6976–6992.

    CAS  Google Scholar 

  7. de la Fuente, J. M.; Berry, C. C. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjugate Chem.2005, 16, 1176–1180.

    Google Scholar 

  8. Patel, S. S.; Belmont, B. J.; Sante, J. M.; Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell2007, 129, 83–96.

    CAS  Google Scholar 

  9. Alber, F.; Dokudovskaya, S.; Veenhoff, L. M.; Zhang, W. Z.; Kipper, J.; Devos, D.; Suprapto, A.; Karni-Schmidt, O.; Williams, R.; Chait, B. T. et al. The molecular architecture of the nuclear pore complex. Nature2007, 450, 695–701.

    CAS  Google Scholar 

  10. van der Aa, M. A. E. M.; Mastrobattista, E.; Oosting, R. S.; Hennink, W. E.; Koning, G. A.; Crommelin, D. J. A. The nuclear pore complex: The gateway to successful nonviral gene delivery. Pharm. Res.2006, 23, 447–459.

    Google Scholar 

  11. Kubitscheck, U.; Grünwald, D.; Hoekstra, A.; Rohleder, D.; Kues, T.; Siebrasse, J. P.; Peters, R. Nuclear transport of single molecules: Dwell times at the nuclear pore complex. J. Cell. Biol.2005, 168, 233–243.

    Google Scholar 

  12. Kosugi, S.; Hasebe, M.; Entani, T.; Takayama, S.; Tomita, M.; Yanagawa, H. Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem. Biol.2008, 15, 940–949.

    CAS  Google Scholar 

  13. Nitin, N.; LaConte, L.; Rhee, W. J.; Bao, G. Tat peptide is capable of importing large nanoparticles across nuclear membrane in digitonin permeabilized cells. Ann. Biomed. Eng.2009, 37, 2018–2027.

    Google Scholar 

  14. Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc.2003, 125, 4700–4701.

    CAS  Google Scholar 

  15. Austin, L. A.; Kang, B.; Yen, C. W.; El-Sayed, M. A. Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate Chem.2011, 22, 2324–2331.

    CAS  Google Scholar 

  16. Austin, L. A.; Kang, B.; Yen, C. W.; El-Sayed, M. A. Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles. J. Am. Chem. Soc.2011, 133, 17594–17597.

    CAS  Google Scholar 

  17. Pan, L. M.; Liu, J. N.; Shi, J. L. Intranuclear photosensitizer delivery and photosensitization for enhanced photodynamic therapy with ultralow irradiance. Adv. Funct. Mater.2014, 24, 7318–7327.

    CAS  Google Scholar 

  18. Pan, L. M.; Liu, J. N.; He, Q. J.; Shi, J. L. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater.2014, 26, 6742–6748.

    CAS  Google Scholar 

  19. Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of tat peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc.2012, 134, 5722–5725.

    CAS  Google Scholar 

  20. Tan, L. F.; Tang, W. T.; Liu, T. L.; Ren, X. L.; Fu, C. H.; Liu, B.; Ren, J.; Meng, X. W. Biocompatible hollow polydopamine nanoparticles loaded ionic liquid enhanced tumor microwave thermal ablation in vivo.ACS Appl. Mater. Interfaces2016, 8, 11237–11245.

    CAS  Google Scholar 

  21. Park, N. H.; Cheng, W.; Lai, F.; Yang, C.; Florez de Sessions, P.; Periaswamy, B.; Wenhan Chu, C.; Bianco, S.; Liu, S. Q.; Venkataraman, S. et al. Addressing drug resistance in cancer with macromolecular chemotherapeutic agents. J. Am. Chem. Soc.2018, 140, 4244–4252.

    CAS  Google Scholar 

  22. Zang, Y. D.; Wei, Y. C.; Shi, Y. J.; Chen, Q.; Xing, D. Chemo/photoacoustic dual therapy with mRNA-triggered dox release and photoinduced shockwave based on a DNA-gold nanoplatform. Small2016, 12, 756–769.

    CAS  Google Scholar 

  23. Kang, B.; Yu, D. C.; Dai, Y. D.; Chang, S. Q.; Chen, D.; Ding, Y. T. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small2009, 5, 1292–1301.

    CAS  Google Scholar 

  24. Huang, G. J.; Si, Z.; Yang, S. H.; Li, C.; Xing, D. Dextran based pH-sensitive near-infrared nanoprobe for in vivo differential-absorption dual-wavelength photoacoustic imaging of tumors. J. Mater. Chem.2012, 22, 22575–22581.

    CAS  Google Scholar 

  25. Wen, L. W.; Ding, W. Z.; Yang, S. H.; Xing, D. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes. Biomaterials2016, 75, 163–173.

    CAS  Google Scholar 

  26. Zhong, J. P.; Wen, L. W.; Yang, S. H.; Xiang, L. Z.; Chen, Q.; Xing, D. Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods. Nanomedicine2015, 11, 1499–1509.

    CAS  Google Scholar 

  27. Zhou, F. F.; Wu, S. N.; Yuan, Y.; Chen, W. R.; Xing, D. Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small2012, 8, 1543–1550.

    CAS  Google Scholar 

  28. Kang, B.; Dai, Y. D.; Chang, S. Q.; Chen, D. Explosion of singlewalled carbon nanotubes in suspension induced by a large photo-acoustic effect. Carbon2008, 46, 978–981.

    CAS  Google Scholar 

  29. Shi, Y. J.; Yang, S. H.; Xing, D. New insight into photoacoustic conversion efficiency by plasmon-mediated nanocavitation: Implications for precision theranostics. Nano Res.2017, 10, 2800–2809.

    Google Scholar 

  30. Chen, A. P.; Xu, C.; Li, M.; Zhang, H. L.; Wang, D. C.; Xia, M.; Meng, G.; Kang, B.; Chen, H. Y.; Wei, J. W. Photoacoustic “nanobombs” fight against undesirable vesicular compartmentalization of anticancer drugs. Sci. Rep.2015, 5, 15527.

    CAS  Google Scholar 

  31. Liu, L. M.; Chen, Q.; Wen, L. W.; Li, C.; Qin, H.; Xing, D. Photoacoustic therapy for precise eradication of glioblastoma with a tumor site blood-brain barrier permeability upregulating nanoparticle. Adv. Funct. Mater.2019, 29, 1808601.

    Google Scholar 

  32. Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev.2018, 118, 6844–6892.

    CAS  Google Scholar 

  33. Gupta, M. K.; Meyer, T. A.; Nelson, C. E.; Duvall, C. L. Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J. Controlled Release2012, 162, 591–598.

    CAS  Google Scholar 

  34. Bhattacharya, A.; Mukherjee, T. K. Synergistic enhancement of electron-accepting and -donating ability of nonconjugated polymer nanodot in micellar environment. Langmuir2017, 33, 14718- 14727.

    CAS  Google Scholar 

  35. Cheng, Y.; Sun, C. L.; Ou, X. W.; Liu, B. F.; Lou, X. D.; Xia, F. Dual-targeted peptide-conjugated multifunctional fluorescent probe with aiegen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chem. Sci.2017, 8, 4571–4578.

    CAS  Google Scholar 

  36. Toy, R.; Bauer, L.; Hoimes, C.; Ghaghada, K. B.; Karathanasis, E. Targeted nanotechnology for cancer imaging. Adv. Drug Deliv. Rev.2014, 76, 79–97.

    CAS  Google Scholar 

  37. Pan, J. B.; Wang, Y. Q.; Zhang, C.; Wang, X. Y.; Wang, H. Y.; Wang, J. J.; Yuan, Y. Z.; Wang, X.; Zhang, X. J.; Yu, C. S. et al. Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater.2018, 30, 1704408.

    Google Scholar 

  38. Cai, Y. B.; Shen, H. S.; Zhan, J.; Lin, M. L.; Dai, L. H.; Ren, C. H.; Shi, Y.; Liu, J. F.; Gao, J.; Yang, Z. M. Supramolecular “trojan horse” for nuclear delivery of dual anticancer drugs. J. Am. Chem. Soc.2017, 139, 2876–2879.

    CAS  Google Scholar 

  39. Yuan, L.; Lin, W. Y.; Yang, Y. T.; Chen, H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence on/off switching: Rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc.2012, 134, 1200–1211.

    CAS  Google Scholar 

  40. Hu, X. L.; Liu, G. H.; Li, Y.; Wang, X. R.; Liu, S. Y. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc.2015, 137, 362–368.

    CAS  Google Scholar 

  41. Qiu, X. P.; Winnik, F. M. Facile and efficient one-pot transformation of RAFT polymer end groups via a mild aminolysis/michael addition sequence. Macromol. Rapid Commun.2006, 27, 1648–1653.

    CAS  Google Scholar 

  42. Peng, H. B.; Tang, J.; Zheng, R.; Guo, G. N.; Dong, A. A.; Wang, Y. J.; Yang, W. L. Nuclear-targeted multifunctional magnetic nanoparticles for photothermal therapy. Adv. Healthc. Mater.2017, 6, 1601289.

    Google Scholar 

  43. Hu, X. L.; Zhai, S. D.; Liu, G. H.; Xing, D.; Liang, H. L. Liu, S. Y. Concurrent drug unplugging and permeabilization of polyprodrug-gated crosslinked vesicles for cancer combination chemotherapy. Adv. Mater.2018, 30, 1706307.

    Google Scholar 

  44. Zhou, F. F.; Wu, S. N.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D. Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials2012, 33, 3235–3242.

    CAS  Google Scholar 

  45. Zhao, N.; Wu, B. Y.; Hu, X. L.; Xing, D. Nir-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials2017, 141, 40–49.

    CAS  Google Scholar 

  46. Roth, P. J.; Boyer, C.; Lowe, A. B.; Davis, T. P. Raft polymerization and thiol chemistry: A complementary pairing for implementing modern macromolecular design. Macromol. Rapid Commun.2011, 32, 1123–1143.

    CAS  Google Scholar 

  47. Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. RETRACTED: Carbon dot/tat peptide co-conjugated bubble nanoliposome for multicolor cell imaging, nuclear-targeted delivery, and chemo/photothermal synergistic therapy. Chem. Eng. J.2017, 312, 144–157.

    CAS  Google Scholar 

  48. Hu, X. L.; Li, Y.; Liu.; Zhang, G. Y.; Liu, S. Y. Intracellular cascade fret for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers. ACS Appl. Mater. Interfaces2015, 7, 15551–15560.

    CAS  Google Scholar 

  49. Vankayala, R.; Kuo, C. L.; Nuthalapati, K.; Chiang, C. S.; Hwang, K. C. Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Funct. Mater.2015, 25, 5934–5945.

    CAS  Google Scholar 

  50. Zhai, S. D.; Hu, X. L.; Hu, Y. J.; Wu, B. Y.; Xing, D. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials2017, 121, 41–54.

    CAS  Google Scholar 

  51. Chen, Q.; Liu, X. D.; Chen, J. W.; Zeng, J. F.; Cheng, Z. P.; Liu, Z. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging. Adv. Mater.2015, 27, 6820–6827.

    CAS  Google Scholar 

  52. Zhang, S. B.; Guo, W. S.; Wei, J.; Li, C.; Liang, X. J.; Yin, M. Z. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. Acs Nano2017, 11, 3797–3805.

    CAS  Google Scholar 

  53. Yang, C. H.; Ren, C. H.; Zhou, J.; Liu, J. J.; Zhang, Y. M.; Huang, F.; Ding, D.; Xu, B.; Liu, J. F. Dual fluorescent- and isotopic-labelled self-assembling vancomycin for in vivo imaging of bacterial infections. Angew. Chem., Int. Ed.2017, 56, 2356–2360.

    CAS  Google Scholar 

  54. Li, J. W.; Xiao, H.; Yoon, S. J.; Liu, C. B.; Matsuura, D.; Tai, W. Y.; Song, L.; O’Donnell, M.; Cheng, D.; Gao, X. H. Functional photo-acoustic imaging of gastric acid secretion using pH-responsive polyaniline nanoprobes. Small2016, 12, 4690–4696.

    CAS  Google Scholar 

  55. Guo, L.; Niu, G. L.; Zheng, X. L.; Ge, J. C.; Liu, W. M.; Jia, Q. Y.; Zhang, P. P.; Zhang, H. Y.; Wang, P. F. Single near-infrared emissive polymer nanoparticles as versatile phototheranostics. Adv. Sci.2017, 4, 1700085.

    Google Scholar 

  56. Chen, Q.; Liu, X. D.; Zeng, J. F.; Cheng, Z. P.; Liu, Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials2016, 98, 23–30.

    CAS  Google Scholar 

  57. Wang, D.; Lee, M.; Xu, W.; Shan, G.; Zheng, X.; Kwok, R.; Lam, J.; Hu, X.; Tang, B. Boosting non-radiative decay to do useful work: Development of a multi-modality theranostic system from an AIEgen. Angew. Chem., Int. Ed.2019, 58, 5628–5632.

    CAS  Google Scholar 

  58. Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J. et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc.2013, 135, 933–940.

    CAS  Google Scholar 

  59. Guan, M. R.; Ge, J. C.; Wu, J. Y.; Zhang, G. Q.; Chen, D. Q.; Zhang, W.; Zhang, Y.; Zou, T. J.; Zhen, M. M.; Wang, C. R. et al. Fullerene/photosensitizer nanovesicles as highly efficient and clearable photo-theranostics with enhanced tumor accumulation for cancer therapy. Biomaterials2016, 103, 75–85.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81630046) and the Science and Technology Planning Project of Guangdong Province (Nos. 2015B020233016 and 2014B020215003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Niu, G., Zhai, S. et al. Specific photoacoustic cavitation through nucleus targeted nanoparticles for high-efficiency tumor therapy. Nano Res. 13, 719–728 (2020). https://doi.org/10.1007/s12274-020-2681-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2681-4

Keywords

Navigation