Skip to main content
Log in

Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The isostructural and isoelectronic transition-metal-dichalcogenides 1T-TaS2 and 1T-TaSe2 are layered materials with intricate electronic structures. Combining the molecular beam epitaxy growth, scanning tunneling microscopy measurements and first-principles calculations, we prepare monolayer 1T-TaS2 and TaSe2 and explore their electronic structures at the atomic scale. Both two-dimensional (2D) compounds exhibit commensurate charge density wave phase at low temperature. The conductance mapping identifies the contributions from different Ta atoms to the local density of states with spatial and energy resolution. Both 1T-TaS2 and 1T-TaSe2 monolayer are shown to be insulators, while the former has a Mott gap and the latter is a regular band insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fazekas, P.; Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philos. Mag. B1979, 39, 229–244.

    CAS  Google Scholar 

  2. Di Salvo, F. J.; Graebner, J. E. The low temperature electrical properties of 1T-TaS2. Solid State Commun.1977, 23, 825–828.

    CAS  Google Scholar 

  3. Rossnagel, K.; Smith, N. V. Spin-orbit coupling in the band structure of reconstructed 1T-TaS2. Phys. Rev. B2006, 73, 073106.

    Google Scholar 

  4. Perfetti, L.; Gloor, T. A.; Mila, F.; Berger, H.; Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B2005, 71, 153101.

    Google Scholar 

  5. Ang, R.; Tanaka, Y.; Ieki, E.; Nakayama, K.; Sato, T.; Li, L. J.; Lu, W. J.; Sun, Y. P.; Takahashi, T. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. Phys. Rev. Lett.2012, 109, 176403.

    CAS  Google Scholar 

  6. Perfetti, L.; Loukakos, P. A.; Lisowski, M.; Bovensiepen, U.; Berger, H.; Biermann, S.; Cornaglia, P. S.; Georges, A.; Wolf, M. Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. Phys. Rev. Lett.2006, 97, 067402.

    CAS  Google Scholar 

  7. Wilson, J. A.; de Salvo, F. J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys.2001, 50, 1171–1248.

    Google Scholar 

  8. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys.: Condens. Matter.2011, 23, 213001.

    CAS  Google Scholar 

  9. Cho, D.; Cho, Y. H.; Cheong, S. W.; Kim, K. S.; Yeom, H. W. Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T-TaS2. Phys. Rev. B2015, 92, 085132.

    Google Scholar 

  10. Scruby, C. B.; Williams, P. M.; Parry, G. S. The role of charge density waves in structural transformations of 1T-TaS2. Philos. Mag.1975, 31, 255–274.

    CAS  Google Scholar 

  11. Smith, N. V.; Kevan, S. D.; DiSalvo, F. J. Band structures of the layer compounds 1T-TaS2 and 2H-TaSe2 in the presence of commensurate charge-density waves. J. Phys. C: Solid State Phys.1985, 18, 3175–3189.

    CAS  Google Scholar 

  12. Ritschel, T.; Trinckauf, J.; Koepernik, K.; Büchner, B.; Zimmermann, M. V.; Berger, H.; Joe, Y. I.; Abbamonte, P.; Geck, J. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys.2015, 11, 328–331.

    CAS  Google Scholar 

  13. Qiao, S.; Li, X. T.; Wang, N. Z.; Ruan, W.; Ye, C.; Cai, P.; Hao, Z. Q.; Yao, H.; Chen, X. H.; Wu, J. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: An interplay between localized and itinerant orbitals. Phys. Rev. X2017, 7, 041054.

    Google Scholar 

  14. Bovet, M.; van Smaalen, S.; Berger, H.; Gaal, R.; Forró, L.; Schlapbach, L.; Aebi, P. Interplane coupling in the quasi-two-dimensional 1T-TaS2. Phys. Rev. B2003, 67, 125105.

    Google Scholar 

  15. Tsang, J. C.; Smith, J. E. Jr.; Shafer, M. W.; Meyer, S. F. Raman spectroscopy of the charge-density-wave state in 1T- and 2H-TaSe2. Phys. Rev. B1977, 16, 4239–4245.

    CAS  Google Scholar 

  16. Horiba, K.; Ono, K.; Oh, J. H.; Kihara, T.; Nakazono, S.; Oshima, M.; Shiino, O.; Yeom, H. M.; Kakizaki, A.; Aiura, Y. Charge-density wave and three-dimensional Fermi surface in 1T-TaSe2 studied by photoemission spectroscopy. Phys. Rev. B2002, 66, 073106.

    Google Scholar 

  17. Ge, Y. Z.; Liu, A. Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2. Phys. Rev. B2010, 82, 155133.

    Google Scholar 

  18. Darancet, P.; Millis, A. J.; Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B2014, 90, 045134.

    Google Scholar 

  19. Suzuki, M. T.; Harima, H. Electronic band structure of 1T-TaSe2 in CDW phase. J. Magn. Magn. Mater.2004, 272–276, E653–E654.

    Google Scholar 

  20. Ngankeu, A. S.; Mahatha, S. K.; Guilloy, K.; Bianchi, M.; Sanders, C. E.; Hanff, K.; Rossnagel, K.; Miwa, J. A.; Nielsen, C. B.; Bremholm, M. et al. Quasi-one-dimensional metallic band dispersion in the commensurate charge density wave of 1T-TaS2. Phys. Rev. B2017, 96, 195147.

    Google Scholar 

  21. Ma, L. G.; Ye, C.; Yu, Y. J.; Lu, X. F.; Niu, X. H.; Kim, S.; Feng, D. L.; Tománek, D.; Son, Y. W.; Chen, X. H. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun.2016, 7, 10956.

    CAS  Google Scholar 

  22. Dardel, B.; Grioni, M.; Malterre, D.; Weibel, P.; Baer, Y.; Lévy, F. Temperature-dependent pseudogap and electron localization in 1T-TaS2. Phys. Rev. B1992, 45, 1462–1465.

    CAS  Google Scholar 

  23. Cho, D.; Cheon, S.; Kim, K. S.; Lee, S. H.; Cho, Y. H.; Cheong, S. W.; Yeom, H. W. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun.2016, 7, 10453.

    CAS  Google Scholar 

  24. Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol.2015, 10, 270–276.

    CAS  Google Scholar 

  25. Yoshida, M.; Zhang, Y. J.; Ye, J. T.; Suzuki, R.; Imai, Y.; Kimura, S.; Fujiwara, A.; Iwasa, Y. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep.2014, 4, 7302.

    CAS  Google Scholar 

  26. Tsen, A. W.; Hovden, R.; Wang, D.; Kim, Y. D.; Okamoto, J.; Spoth, K. A.; Liu, Y.; Lu, W. J.; Sun, Y. P.; Hone, J. C. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2. Proc. Natl. Acad. Sci. USA2015, 112, 15054–15059.

    CAS  Google Scholar 

  27. Albertini, O. R.; Zhao, R.; McCann, R. L.; Feng, S. M.; Terrones, M.; Freericks, J. K.; Robinson, J. A.; Liu, A. Y. Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: Detection of commensurate charge density wave phase through Raman scattering. Phys. Rev. B2016, 93, 214109.

    Google Scholar 

  28. He, R.; Okamoto, J.; Ye, Z. P.; Ye, G. H.; Anderson, H.; Dai, X.; Wu, X. X.; Hu, J. P.; Liu, Y.; Lu, W. J. et al. Distinct surface and bulk charge density waves in ultrathin 1T-TaS2. Phys. Rev. B2016, 94, 201108.

    Google Scholar 

  29. Sakabe, D.; Liu, Z.; Suenaga, K.; Nakatsugawa, K.; Tanda, S. Direct observation of mono-layer, bi-layer, and tri-layer charge density waves in 1T-TaS2 by transmission electron microscopy without a substrate. NPJ Quan. Mater.2017, 2, 22.

    Google Scholar 

  30. Lin, H. C.; Huang, W. T.; Zhao, K.; Lian, C. S.; Duan, W. H.; Chen, X.; Ji, S. H. Growth of atomically thick transition metal sulfide films on graphene/6H-SiC(0001) by molecular beam epitaxy. Nano Res.2018, 11, 4722–4727.

    CAS  Google Scholar 

  31. Law, K. T.; Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA2017, 114, 6996–7000.

    CAS  Google Scholar 

  32. Klanjšek, M.; Zorko, A.; Žitko, R.; Mravlje, J.; Jagličić, Z.; Biswas, P. K.; Prelovšek, P.; Mihailovic, D.; Arčon, D. A high-temperature quantum spin liquid with polaron spins. Nat. Phys.2017, 13, 1130–1134.

    Google Scholar 

  33. Ribak, A.; Silber, I.; Baines, C.; Chashka, K.; Salman, Z.; Dagan, Y.; Kanigel, A. Gapless excitations in the ground state of 1T-TaS2. Phys. Rev. B2017, 96, 195131.

    Google Scholar 

  34. Nakata, Y.; Yoshizawa, T.; Sugawara, K.; Umemoto, Y.; Takahashi, T.; Sato, T. Selective fabrication of mott-insulating and metallic monolayer TaSe2. ACS Appl. Nano Mater.2018, 1, 1456–1460.

    CAS  Google Scholar 

  35. Samnakay, R.; Wickramaratne, D.; Pope, T.; Lake, R. K.; Salguero, T. T.; Balandin, A. A. Zone-folded phonons and the commensurate-incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett.2015, 15, 2965–2973.

    CAS  Google Scholar 

  36. Perfetti, L.; Georges, A.; Florens, S.; Biermann, S.; Mitrovic, S.; Berger, H.; Tomm, Y.; Höchst, H.; Grioni, M. Spectroscopic signatures of a bandwidth-controlled mott transition at the surface of 1T-TaSe2. Phys. Rev. Lett.2003, 90, 166401.

    CAS  Google Scholar 

  37. Colonna, S.; Ronci, F.; Cricenti, A.; Perfetti, L.; Berger, H.; Grioni, M. Mott phase at the surface of 1T-TaSe2 observed by scanning tunneling microscopy. Phys. Rev. Lett.2005, 94, 036405.

    Google Scholar 

  38. Bjerkelund, E.; Kjekshus, A. On the structural properties of the Ta1+xSe2 phase. Acta Chem. Scand.1967, 21, 513–526.

    CAS  Google Scholar 

  39. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B1993, 47, 558–561.

    CAS  Google Scholar 

  40. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B1994, 49, 14251–14269.

    CAS  Google Scholar 

  41. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

    CAS  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  43. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59, 1758–1775.

    CAS  Google Scholar 

  44. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  45. Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B1995, 52, R5467–R5470.

    CAS  Google Scholar 

  46. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B1998, 57, 1505–1509.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11874233, 11622433, and 11574175) and the Ministry of Science and Technology of China (Nos. 2016YFA0301002 and 2018YFA0305603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Chen or Shuai-Hua Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Huang, W., Zhao, K. et al. Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2. Nano Res. 13, 133–137 (2020). https://doi.org/10.1007/s12274-019-2584-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2584-4

Keywords

Navigation