Skip to main content
Log in

Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The surface-enhanced Raman spectroscopy (SERS) is a technique for the detection of analytes on the surface with an ultrahigh sensitivity down to the atomic-scale, yet the fabrication of SERS materials such as nanoparticles or arrays of coinage metals often involve multiple complex steps with the high cost and pollution, largely limiting the application of SERS. Here, we report a complex hierarchical metallic glassy (MG) nanostructure by simply replicating the surface microstructure of butterfly wings through vapor deposition technique. The MG nanostructure displays an excellent SERS effect and moreover, a superhydrophobicity and self-cleaning behavior. The SERS effect of the MG nanostructure is attributed to the intrinsic nanoscale structural heterogeneities on the MG surface, which provides a large number of hotspots for the localized electromagnetic field enhancement affirmed by the finite-difference time-domain (FDTD) simulation. Our works show that the MG could be a new potential SERS material with low cost and good durability, well extending the functional application of this kind of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg-Oppenheimer, P.; Mahajan, S.; Steiner, U. Hierarchical electrohydrodynamic structures for surface-enhanced Raman scattering. Adv. Mater.2012, 24, OP175–OP180.

    CAS  Google Scholar 

  2. Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today2012, 15, 16–25.

    CAS  Google Scholar 

  3. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem.2008, 1, 601–626.

    CAS  Google Scholar 

  4. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater.2016, 1, 16021.

    CAS  Google Scholar 

  5. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature2010, 464, 392–395.

    CAS  Google Scholar 

  6. Li, J. F.; Zhang, Y. J.; Rudnev, A. V.; Anema, J. R.; Li, S. B.; Hong, W. J.; Rajapandiyan, P.; Lipkowski, J.; Wandlowski, T.; Tian, Z. Q. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc.2015, 137, 2400–2408.

    CAS  Google Scholar 

  7. Mo, X.; Wu, Y. W.; Zhang, J. H.; Hang, T.; Li, M. Bioinspired multifunctional Au nanostructures with switchable adhesion. Langmuir2015, 31, 10850–10858.

    CAS  Google Scholar 

  8. Oh, Y. J.; Jeong, K. H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater.2012, 24, 2234–2237.

    CAS  Google Scholar 

  9. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater.2006, 18, 491–495.

    CAS  Google Scholar 

  10. Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy2017, 5, 72–78.

    Google Scholar 

  11. Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications; Springer: Heidelberg, 2006.

    Google Scholar 

  12. Li, J. F.; Anema, J. R.; Wandlowski, T.; Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev.2015, 44, 8399–8409.

    CAS  Google Scholar 

  13. Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett.2010, 10, 553–561.

    CAS  Google Scholar 

  14. Shan, Y. F.; Zheng, Z. H.; Liu, J. J.; Yang, Y.; Li, Z. Y.; Huang, Z. R.; Jiang, D. L. Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate. NPJ Comput. Mater.2017, 3, 11.

    Google Scholar 

  15. Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering. Nanoscale2015, 7, 17079–17087.

    CAS  Google Scholar 

  16. Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater.2011, 23, 461–476.

    CAS  Google Scholar 

  17. Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature2009, 457, 868–873.

    CAS  Google Scholar 

  18. Wang, J. Q.; Liu, Y. H.; Chen, M. W.; Xie, G. Q.; Louzguine-Luzgin, D. V.; Inoue, A.; Perepezko, J. H. Rapid degradation of Azo dye by Fe-based metallic glass powder. Adv. Funct. Mater.2012, 22, 2567–1570.

    CAS  Google Scholar 

  19. Liang, S. X.; Jia, Z.; Liu, Y. J.; Zhang, W. C.; Wang, W. M.; Lu J.; Zhang, L. C. Compelling rejuvenated catalytic performance in metallic glasses. Adv. Mater.2018, 30, 1802764.

    Google Scholar 

  20. Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater.2016, 28, 10293–10297.

    CAS  Google Scholar 

  21. Tan, Y. W.; Gu, J. J.; Xu, L. H.; Zang, X. N.; Liu, D. X.; Zhang, W.; Liu, Q. L.; Zhu, S. M.; Su, H. L.; Feng, C. L. et al. High-density hotspots engineered by naturally piled-up subwavelength structures in threedimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv. Funct. Mater.2012, 22, 1578–1585.

    CAS  Google Scholar 

  22. Xu, B. B.; Zhang, Y. L.; Zhang, W. Y.; Liu, X. Q.; Wang, J. N.; Zhang, X. L.; Zhang, D. D.; Jiang, H. B.; Zhang, R.; Sun, H. B. Silver-coated rose petal: Green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Adv. Opt. Mater.2013, 1, 56–60.

    Google Scholar 

  23. Qian, C.; Ni, C.; Yu, W. X.; Wu, W. G.; Mao, H. Y.; Wang, Y. F.; Xu, J. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering. Small2011, 7, 1801–1806.

    CAS  Google Scholar 

  24. Chou, S. Y.; Yu, C. C.; Yen, Y. T.; Lin, K. T.; Chen, H. L.; Su, W. F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal. Chem.2015, 87, 6017–6024.

    CAS  Google Scholar 

  25. Mu, Z. D.; Zhao, X. W.; Xie, Z. Y.; Zhao, Y. J.; Zhong, Q. F.; Bo, L.; Gu, Z. Z. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J. Mater. Chem. B2013, 1, 1607–1613.

    CAS  Google Scholar 

  26. Huang, J. A.; Zhang, Y. L.; Zhao, Y. Q.; Zhang, X. L.; Sun, M. L.; Zhang, W. J. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale2016, 8, 11487–11493.

    CAS  Google Scholar 

  27. Tan, Y. W.; Gu, J. J.; Zang, X. N.; Xu, W.; Shi, K. C.; Xu, L. H.; Zhang, D. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew. Chem., Int. Ed.2011, 50, 8307–8311.

    CAS  Google Scholar 

  28. Tanahashi, I.; Harada, Y. Silver nanoparticles deposited on TiO2-coated cicada and butterfly wings as naturally inspired SERS substrates. J. Mater. Chem. C2015, 3, 5721–5726.

    CAS  Google Scholar 

  29. Zhang, Q. X.; Chen, Y. X.; Guo, Z.; Liu, H. L.; Wang, D. P.; Huang, X. J. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. ACS Appl. Mater. Interfaces2013, 5, 10633–10642.

    CAS  Google Scholar 

  30. Liu, X. J.; Zong, C. H.; Ai, K. L.; He, W. H.; Lu, L. H. Engineering natural materials as surface-enhanced Raman spectroscopy substrates for in situ molecular sensing. ACS Appl. Mater. Interfaces2012, 4, 6599–6608.

    CAS  Google Scholar 

  31. Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater.2016, 28, 4871–4876.

    CAS  Google Scholar 

  32. Kong, T. T.; Luo, G. Y.; Zhao, Y. J.; Liu, Z. Bioinspired superwettability micro/nanoarchitectures: Fabrications and applications. Adv. Funct. Mater.2019, 29, 1808012.

    Google Scholar 

  33. Schmidt, M. S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater.2012, 24, OP11–OP18.

    CAS  Google Scholar 

  34. Yang, L. B.; Liu, H. L.; Ma, Y. M.; Liu, J. H. Solvent-induced hot spot switch on silver nanorod enhanced Raman spectroscopy. Analyst2012, 137, 1547–1549.

    CAS  Google Scholar 

  35. Wu, Y. W.; Hang, T.; Yu, Z. Y.; Gu, J. J.; Li, M. Quasi-periodical 3D hierarchical silver nanosheets with sub-10 nm nanogap applied as an effective and applicable SERS substrate. Adv. Mater. Interfaces2015, 2, 1500359.

    Google Scholar 

  36. Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics—A route to nanoscale optical devices. Adv. Mater.2001, 13, 1501–1505.

    CAS  Google Scholar 

  37. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.2007, 58, 267–297.

    CAS  Google Scholar 

  38. Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater.2010, 20, 2815–2824.

    CAS  Google Scholar 

  39. Xu, W. G.; Xiao, J. Q.; Chen, Y. F.; Chen, Y. B.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater.2013, 25, 928–933.

    CAS  Google Scholar 

  40. Hanske, C.; Sanz-Ortiz, M. N.; Liz-Marzán, L. M. Silica-coated plasmonic metal nanoparticles in action. Adv. Mater.2018, 30, 1707003.

    Google Scholar 

  41. Yang, X. Z.; Li, J.; Zhao, Y. X.; Yang, J. H.; Zhou, L. Y.; Dai, Z. G.; Guo, X.; Mu, S. J.; Liu, Q. Z.; Jiang, C. M. et al. Self-assembly of Au@Ag core–shell nanocuboids into staircase superstructures by droplet evaporation. Nanoscale2018, 10, 142–149.

    CAS  Google Scholar 

  42. Wagner, H.; Bedorf, D.; Küchemann, S.; Schwabe, M.; Zhang, B.; Arnold, W.; Samwer, K. Local elastic properties of a metallic glass. Nat. Mater.2011, 10, 439–442.

    CAS  Google Scholar 

  43. Ye, J. C.; Lu, J.; Liu, C. T.; Wang, Q.; Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater.2010, 9, 619–623.

    CAS  Google Scholar 

  44. Liu, Y. H.; Wang, D.; Nakajima, K.; Zhang, W.; Hirata, A.; Nishi, T.; Inoue, A.; Chen, M. W. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys. Rev. Lett.2011, 106, 125504.

    CAS  Google Scholar 

  45. Hwang, J. W.; Melgarejo, Z. H.; Kalay, Y. E.; Kalay, I.; Kramer, M. J.; Stone, D. S.; Voyles, P. M. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett.2012, 108, 195505.

    Google Scholar 

  46. Miracle, D. B. A structural model for metallic glasses. Nat. Mater.2004, 3, 697–702.

    CAS  Google Scholar 

  47. Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P. L.; Luo, W. K.; Shastri, S. D.; Ma, E. Polyamorphism in a metallic glass. Nat. Mater.2007, 6, 192–197.

    CAS  Google Scholar 

  48. Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature2006, 439, 419–425.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the National Natural Science Foundation of China (Nos. 51822107, 51671121, 51761135125, and 61888102), the National Key Research and Development Program (No. 2018YFA0703603) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB07030200 and XDB30000000). We appreciate Professor Di Zhang’s deep discussions on the usage of bio-templates. The authors also thank Ruhao Pan and Xianzhong Yang for discussions on collecting Raman spectra, Mo Han Wang for the measurement of UV–vis absorption spectra and Kun Chen for the dielectric coefficient measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Gu or Baoan Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Li, J., Cao, C. et al. Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering. Nano Res. 12, 2808–2814 (2019). https://doi.org/10.1007/s12274-019-2517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2517-2

Keywords

Navigation