Skip to main content
Log in

Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) WS2 offers great prospects for assembling next-generation optoelectronic and electronic devices due to its thickness-dependent optical and electronic properties. However, layer-number-controlled growth of WS2 is still a challenge up to now. This work presents controlled growth of bilayer WS2 triangular flakes by carbon-nanoparticle-assisted chemical vapor deposition (CVD) process. The growth mechanism is also proposed. In addition, the field effect transistors (FETs) based on monolayer and bilayer WS2 are also fabricated and investigated. The bilayer FET displays a mobility of 34 cm2·V-1·s-1, much higher than that of the monolayer FET. The high figures of merit make bilayer WS2 a promising candidate in high-performance electronics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  2. Plutnar, J.; Pumera, M.; Sofer, Z. The chemistry of CVD graphene. J. Mater. Chem. C2018, 6, 6082–6101.

    CAS  Google Scholar 

  3. Wu, X.; Mu, F. W.; Wang, Y. H.; Zhao, H. Y. Graphene and graphene-based nanomaterials for DNA detection: A review. Molecules2018, 23, 2050.

    Google Scholar 

  4. Su, S.; Sun, H. F.; Xu, F.; Yuwen, L.; Fan, C. H.; Wang, L. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchimica Acta2014, 181, 1497–1503.

    CAS  Google Scholar 

  5. Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/ h-BN heterostructures via a sulfide-resistant alloy. ACS Nano2016, 10, 2063–2070.

    CAS  Google Scholar 

  6. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano2013, 7, 8963–8971.

    CAS  Google Scholar 

  7. Wan, Y.; Xiao J.; Li, J. Z.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z. G.; Zhang, H.; Wang, Y. L. et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater.2018, 30, 1703888.

    Google Scholar 

  8. Zhou, Y. Q.; Tan, H. J.; Sheng, Y. W.; Fan, Y.; Xu, W. S.; Warner, J. H. Utilizing interlayer excitons in bilayer WS2 for increased photovoltaic response in ultrathin graphene vertical cross-bar photodetecting tunneling transistors. ACS Nano2018, 12, 4669–4677.

    CAS  Google Scholar 

  9. Kim, H. C.; Kim, H.; Lee, J. U.; Lee, H. B.; Choi, D. H.; Lee, J. H.; Lee, W. H.; Jhang, S. H.; Park, B. H.; Cheong, H. et al. Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano2015, 9, 6854–6860.

    CAS  Google Scholar 

  10. Li, S. L.; Wakabayash, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett.2013, 13, 3546–3552.

    CAS  Google Scholar 

  11. Yang, R. L.; Feng, S. H.; Xiang, J. Y.; Jia, Z. Y.; Mu, C. P.; Wen, F. S.; Liu, Z. Y. Ultrahigh-gain and fast photodetectors built on atomically thin bilayer tungsten disulfide grown by chemical vapor deposition. ACS Appl. Mater. Interfaces2017, 9, 42001–42010.

    CAS  Google Scholar 

  12. Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semiconductors2017, 38, 034001.

    Google Scholar 

  13. Zhang, H.; Li, C.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Complementary logic with voltage zero-loss and nano-watt power via configurable MoS2/WSe2 gate. Adv. Funct. Mater.2018, 28, 1805171.

    Google Scholar 

  14. Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep.2014, 4, 5209.

    CAS  Google Scholar 

  15. Thripuranthaka, M.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces2014, 6, 1158–1163.

    Google Scholar 

  16. Lin, H. C.; Wang, J. W.; Luo, Q. Q.; Peng, H.; Luo, C. H.; Qi, R. J.; Huang, R.; Travas-Sejdic, J.; Duan, C. G. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. J. Alloys Compd.2017, 699, 222–229.

    CAS  Google Scholar 

  17. Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces2014, 6, 21215–21222.

    CAS  Google Scholar 

  18. Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano2013, 7, 5235–5242.

    Google Scholar 

  19. Zheng, J. J.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater.2017, 29, 1604540.

    Google Scholar 

  20. Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale2015, 7, 1688–1695.

    CAS  Google Scholar 

  21. Samad, L.; Bladow, S. M.; Ding, Q.; Zhuo, J. Q.; Jacobberger, R. M.; Arnold, M. S.; Jin, S. Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano2016, 10, 7039–7046.

    CAS  Google Scholar 

  22. Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc.2018, 140, 14217–14223.

    CAS  Google Scholar 

  23. Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett.2014, 14, 464–472.

    CAS  Google Scholar 

  24. Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett.2013, 13, 1852–1857.

    CAS  Google Scholar 

  25. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater.2012, 24, 2320–2325.

    CAS  Google Scholar 

  26. Tian, H.; Khanaki, A.; Das, P.; Zheng, R. J.; Cui, Z. J.; He, Y. W.; Shi, W. H.; Xu, Z. G.; Lake, R.; Liu, J. L. Role of carbon interstitials in transition metal substrates on controllable synthesis of high-quality large-area two-dimensional hexagonal boron nitride layers. Nano Lett.2018, 18, 3352–3361.

    CAS  Google Scholar 

  27. Ismach, A.; Chou, H.; Mende, P.; Dolocan, A.; Addou, R.; Aloni, S.; Wallace, R.; Feenstra, R.; Ruoff, R. S.; Colombo, L. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater.2017, 4, 025117.

    Google Scholar 

  28. Fan, X. P.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Xu, T.; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano2017, 11, 4892–4898.

    CAS  Google Scholar 

  29. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res.2014, 7, 1731–1737.

    CAS  Google Scholar 

  30. Veres, M.; Füle, M.; Tóth, S.; Koós, M.; Pócsik, I. Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater.2004, 13, 1412–1415.

    CAS  Google Scholar 

  31. Saxena, K.; Shukla, A. K.; Avasthi, D. K.; Kabiraj, D.; Vankar, V. D. Raman and electron field emission studies of the order-disorder transition in Ar ion implanted graphite. Nucl Instrum Methods Phys Res Sec B: Beam Interact Mater Atoms2014, 318, 276–280.

    CAS  Google Scholar 

  32. Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep.2015, 5, 9218.

    Google Scholar 

  33. Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale2015, 7, 5974–5980.

    CAS  Google Scholar 

  34. McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep.2016, 6, 35154.

    CAS  Google Scholar 

  35. Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: A typical study on WS2. Adv. Mater.2017, 29, 1603550.

    Google Scholar 

  36. Xu, Z. Q.; Zhang, Y. P.; Lin, S. H.; Zheng, C. X.; Zhong, Y. L.; Xia, X.; Li, Z. P.; Sophia, P. J.; Fuhrer, M. S.; Cheng, Y. B. et al. Synthesis and transfer of large-area monolayer WS2 crystals: Moving toward the recyclable use of sapphire substrates. ACS Nano2015, 9, 6178–6187.

    CAS  Google Scholar 

  37. Yue, Y. C.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F. L.; Wang, Y.; Zhang, D. H.; Li, R. J.; Dong, H. L.; Hu, W. P. et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces2018, 10, 22435–22444.

    CAS  Google Scholar 

  38. Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep.2013, 3, 1755.

    Google Scholar 

  39. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B2011, 84, 155413.

    Google Scholar 

  40. Chen, F.; Ding, S.; Su, W. T. A feasible approach to fabricate twodimensional WS2 flakes: From monolayer to multilayer. Ceram. Int.2018, 44, 22108–22112.

    CAS  Google Scholar 

  41. Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett.2014, 14, 2019–2025.

    CAS  Google Scholar 

  42. Gaur, A. P. S.; Sahoo, S.; Scott, J. F.; Katiyar, R. S. Electron-phonon interaction and double-resonance Raman studies in monolayer WS2. J. Phys. Chem. C2015, 119, 5146–5151.

    CAS  Google Scholar 

  43. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale2013, 5, 9677–9683.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 51920105004, 51420105002, and 51572199), and the Zhejiang Provincial Natural Science Foundation of China (No. LY19E030008). J. L. would like to thank Yaqi Huang for drawing the schematic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijie Zhang or Shaoming Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhang, L., Li, X. et al. Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition. Nano Res. 12, 2802–2807 (2019). https://doi.org/10.1007/s12274-019-2516-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2516-3

Keywords

Navigation