Skip to main content
Log in

Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A high-efficiency electro-thermal heater requires simultaneously high electrical and thermal conductivities to generate and dissipate Joule heat efficiently. A low input voltage is essential to ensure the heater’s safe applications. However, the low voltage generally leads to low saturated temperature and heating rate and hence a low thermal efficiency. How to reduce the input voltage while maintaining a high electro-thermal efficiency is still a challenge. Herein, a highly electrical and thermal conductive film was constructed using a graphene-based composite which has an internal three-dimensional (3D) conductive network. In the 3D framework, cellulose nanocrystalline (CNC) phase with chiral liquid crystal manner presents in the form of aligned helix between the graphene oxide (GO) layers. Carbon nanodots (CDs) are assembled inside the composite as conductive nanofillers. Subsequent annealing and compression results in the formation of the assembled GO-CNC-CDs film. The carbonized CNC nanorods (CNR) with the helical alignment act as in-plane and through-plane connections of neighboring reduced GO (rGO) nanosheets, forming a conductive network in the composite film. The CDs with ultrafast electrons transfer rates provide additional electrons and phonons transport paths for the composite. As a result, the obtained graphene-based composite film (rGO-CNR-CDs) exhibited a high thermal conductivity of 1,978.6 W·m−1·K−1 and electrical conductivity of 2,053.4 S·cm−1, respectively. The composite film showed an outstanding electro-thermal heating efficiency with the saturated temperature of 315 °C and maximum heating rate of 44.9 °C·s−1 at a very low input voltage of 10 V. The freestanding graphene composite film with the delicate nanostructure design has a great potential to be integrated into electro-thermal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sui, D.; Huang, Y.; Huang, L.; Liang, J. J.; Ma, Y. F.; Chen, Y. S. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192.

    Article  CAS  Google Scholar 

  2. Bae, J. J.; Lim, S. C.; Han, G. H.; Jo, Y. W.; Doung, D. L.; Kim, E. S.; Chae, S. J.; Huy, T. Q.; van Luan, N.; Lee, Y. H. Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 2012, 22, 4819–4826.

    Article  CAS  Google Scholar 

  3. Liu, Z.; Li, Z.; Xu, Z.; Xia, Z. X.; Hu, X. Z.; Kou, L.; Peng, L.; Wei, Y. Y.; Gao, C. Wet-spun continuous graphene films. Chem. Mater. 2014, 26, 6786–6795.

    Article  CAS  Google Scholar 

  4. Karim, N.; Zhang, M. L. H.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K. S. Graphene-based surface heater for de-icing applications. RSC Adv. 2018, 8, 16815–16823.

    Article  CAS  Google Scholar 

  5. Guo, Y.; Dun, C. C.; Xu, J. W.; Mu, J. K.; Li, P. Y.; Gu, L. W.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 2017, 13, 1702645.

    Article  Google Scholar 

  6. Wang, R.; Xu, Z.; Zhuang, J. H.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y. J.; Gao, W. W.; Gao, C. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv. Electron. Mater. 2017, 3, 1600425.

    Article  Google Scholar 

  7. Jiang, J. W.; Wang, J. S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: Electron-phonon interaction effect. J. Appl. Phys. 2011, 110, 124319.

    Article  Google Scholar 

  8. Janas, D.; Koziol, K. K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 2014, 6, 3037–3045.

    Article  CAS  Google Scholar 

  9. Huang, K.; Liu, J. X.; Tan, L. F.; Zuo, J. L.; Fu, L. Ultrahigh temperature graphene molecular heater. Adv. Mater. Interfaces 2018, 5, 1701299.

    Article  Google Scholar 

  10. Zhang, T. Y.; Zhao, H. M.; Wang, D. Y.; Wang, Q.; Pang, Y.; Deng, N. Q.; Cao, H. W.; Yang, Y.; Ren, T. L. A super flexible and custom-shaped graphene heater. Nanoscale 2017, 9, 14357–14363.

    Article  CAS  Google Scholar 

  11. Matsumoto, M.; Mizutani, Y.; Aoki, M. Dehydration/hydration behavior of layered double hydroxide for chemical heat storage. Bull. Chem. Soc. Jpn. 2018, 91, 1205–1209.

    Article  CAS  Google Scholar 

  12. Kasaeian, A.; Nouri, G.; Ranjbaran, P.; Wen, D. S. Solar collectors and photovoltaics as combined heat and power systems: A critical review. Energy Convers. Manage. 2018, 156, 688–705.

    Article  Google Scholar 

  13. Zhang, S. D.; Wang, Z. Y. Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications. Renew. Sust. Energy Rev. 2018, 82, 2319–2331.

    Article  CAS  Google Scholar 

  14. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    CAS  Google Scholar 

  15. Gupta, R.; Rao, K. D. M.; Kiruthika, S.; Kulkarni, G. U. Visibly transparent heaters. ACS Appl. Mater. Interfaces 2016, 8, 12559–12575.

    Article  CAS  Google Scholar 

  16. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  Google Scholar 

  17. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    CAS  Google Scholar 

  18. Wen, Y. Y.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Topological design of ultrastrong and highly conductive graphene films. Adv. Mater. 2017, 29, 1702831.

    Article  Google Scholar 

  19. Cui, L. F.; Wang, X. P.; Chen, N.; Ji, B. X.; Qu, L. T. Trash to treasure: Converting plastic waste into a useful graphene foil. Nanoscale 2017, 9, 9089–9094.

    Article  CAS  Google Scholar 

  20. Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

    Google Scholar 

  21. Guo, Y.; Dun, C. C.; Xu, J. W.; Mu, J. K.; Li, P. Y.; Gu, L. W.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 2017, 13, 1702645.

    Article  Google Scholar 

  22. Ding, J. H.; Zhao, H. R.; Wang, Q. L.; Dou, H. M.; Chen, H.; Yu, H. B. An ultrahigh thermal conductive graphene flexible paper. Nanoscale 2017, 9, 16871–16878.

    Article  CAS  Google Scholar 

  23. Huang, Y. L.; Gong, Q. M.; Zhang, Q.; Shao, Y.; Wang, J. J.; Jiang, Y. Q.; Zhao, M.; Zhuang, D. M.; Liang, J. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures. Nanoscale 2017, 9, 2340–2347.

    Article  CAS  Google Scholar 

  24. Teng, C.; Xie, D.; Wang, J. F.; Yang, Z.; Ren, G. Y.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.

    Article  Google Scholar 

  25. Wang, Z.; Mao, B. Y.; Wang, Q. L.; Yu, J.; Dai, J. X.; Song, R. G.; Pu, Z. H.; He, D. P.; Wu, Z.; Mu, S. C. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 2018, 14, 1704332.

    Article  Google Scholar 

  26. Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018–2027.

    Article  CAS  Google Scholar 

  27. Jiang, L. L.; Sheng, L. Z.; Long, C. L.; Wei, T.; Fan, Z. J. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 2015, 5, 1500771.

    Article  Google Scholar 

  28. Varshney, V.; Patnaik, S. S.; Roy, A. K.; Froudakis, G.; Farmer, B. L. Modeling of thermal transport in pillared-graphene architectures. ACS Nano 2010, 4, 1153–1161.

    Article  CAS  Google Scholar 

  29. Xu, L. Q.; Wei, N.; Zheng, Y. P.; Fan, Z. Y.; Wang, H. Q.; Zheng, J. C. Graphene-nanotube 3D networks: Intriguing thermal and mechanical properties. J. Mater. Chem. 2012, 22, 1435–1444.

    Article  CAS  Google Scholar 

  30. Chen, J.; Walther, J. H.; Koumoutsakos, P. Covalently bonded graphene-carbon nanotube hybrid for high-performance thermal interfaces. Adv. Funct. Mater. 2015, 25, 7539–7545.

    Article  Google Scholar 

  31. Pan, T. W.; Kuo, W. S.; Tai, N. H. Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films. Compos. Sci. Technol. 2017, 151, 44–51.

    Article  CAS  Google Scholar 

  32. Lu, H. F.; Zhang, J.; Luo, J.; Gong, W. B.; Li, C. W.; Li, Q. L.; Zhang, K.; Hu, M.; Yao, Y. G. Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composites Part A 2017, 102, 1–8.

    Article  CAS  Google Scholar 

  33. Meng, X.; Pan, H.; Zhu, C. L.; Chen, Z. X.; Lu, T.; Xu, D.; Li, Y.; Zhu, S. M. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions. ACS Appl. Mater. Interfaces 2018, 10, 22611–22622.

    Article  CAS  Google Scholar 

  34. Pan, H.; Zhu, C.; Lu, T.; Lin, J.; Ma, J.; Zhang, D.; Zhu, S. A chiral smectic structure assembled from nanosheets and nanorods. Chem. Commun. 2017, 53, 1868–1871.

    Article  CAS  Google Scholar 

  35. Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473–6475.

    Article  CAS  Google Scholar 

  36. Miao, P.; Han, K.; Tang, Y. G.; Wang, B. D.; Lin, T.; Cheng, W. B. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale 2015, 7, 1586–1595.

    Article  CAS  Google Scholar 

  37. Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780.

    Article  Google Scholar 

  38. Essner, J. B.; Baker, G. A. The emerging roles of carbon dots in solar photovoltaics: A critical review. Environ. Sci.: Nano 2017, 4, 1216–1263.

    CAS  Google Scholar 

  39. Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 2017, 46, 6111–6123.

    Article  CAS  Google Scholar 

  40. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

    Article  CAS  Google Scholar 

  41. Zhang, Z. P.; Zhang, J.; Chen, N.; Qu, L. T. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890.

    Article  CAS  Google Scholar 

  42. Yu, P.; Wen, X. M.; Toh, Y. R.; Lee, Y. C.; Huang, K. Y.; Huang, S. J.; Shrestha, S.; Conibeer, G.; Tang, J. Efficient electron transfer in carbon nanodot-graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 2894–2901.

    Article  CAS  Google Scholar 

  43. Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3452–3454.

  44. Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogenbonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082.

    Article  CAS  Google Scholar 

  45. Li, H. L.; Dai, S. C.; Miao, J.; Wu, X.; Chandrasekharan, N.; Qiu, H. X.; Yang, J. H. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy. Carbon 2018, 126, 319–327.

    Article  CAS  Google Scholar 

  46. Song, N. J.; Chen, C. M.; Lu, C. X.; Liu, Z.; Kong, Q. Q.; Cai, R. Thermally reduced graphene oxide films as flexible lateral heat spreaders. J. Mater. Chem. A 2014, 2, 16563–16568.

    Article  CAS  Google Scholar 

  47. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  CAS  Google Scholar 

  48. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

    Article  CAS  Google Scholar 

  49. Chen, C. M.; Huang, J. Q.; Zhang, Q.; Gong, W. Z.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 2012, 50, 659–667.

    Article  CAS  Google Scholar 

  50. Xin, G. Q.; Sun, H. T.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521–4526.

    Article  CAS  Google Scholar 

  51. Ding, J. H.; Rahman, O. U.; Zhao, H. R.; Peng, W. J.; Dou, H. M.; Chen, H.; Yu, H. B. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 2017, 28, 39LT01.

    Article  Google Scholar 

  52. Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y. H.; Koo, C. M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494–500.

    Article  CAS  Google Scholar 

  53. Chen, X. J.; Deng, X. M.; Kim, N. Y.; Wang, Y.; Huang, Y.; Peng, L.; Huang, M.; Zhang, X.; Chen, X.; Luo, D. et al. Graphitization of graphene oxide films under pressure. Carbon 2018, 132, 294–303.

    Article  CAS  Google Scholar 

  54. Kong, Q. Q.; Liu, Z.; Gao, J. G.; Chen, C. M.; Zhang, Q.; Zhou, G. M.; Tao, Z. C.; Zhang, X. H.; Wang, M. Z.; Li, F. et al. Hierarchical graphenecarbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 2014, 24, 4222–4228.

    Article  CAS  Google Scholar 

  55. Zhou, E. Z.; Xi, J. B.; Guo, Y.; Liu, Y. J.; Xu, Z.; Peng, L.; Gao, W. W.; Ying, J.; Chen, Z. C.; Gao, C. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 2018, 133, 316–322.

    Article  CAS  Google Scholar 

  56. Kim, H. Y.; Lee, J. W.; Oh, H. M.; Baeg, K. J.; Jung, S.; Yang, H. S.; Lee, W.; Hwang, J. Y.; Kim, K. S.; Jeong, S. Y. et al. Ultrafast heating for intrinsic properties of atomically thin two-dimensional materials on plastic substrates. ACS Appl. Mater. Interfaces 2016, 8, 31222–31230.

    Article  CAS  Google Scholar 

  57. Li, C.; Xu, Y. T.; Zhao, B.; Jiang, L.; Chen, S. G.; Xu, J. B.; Fu, X. Z.; Sun, R.; Wong, C. P. Flexible graphene electrothermal films made from electrochemically exfoliated graphite. J. Mater. Sci. 2016, 51, 1043–1051.

    Article  CAS  Google Scholar 

  58. Zhang, T. Y.; Zhao, H. M.; Yang, Z.; Wang, Q.; Wang, D. Y.; Deng, N. Q.; Yang, Y.; Ren, T. L. Improved electrothermal performance of custom-shaped micro heater based on anisotropic laser-reduced graphene oxide. Appl. Phys. Lett. 2016, 109, 151905.

    Article  Google Scholar 

  59. Lin, S. Y.; Zhang, T. Y.; Lu, Q.; Wang, D. Y.; Yang, Y.; Wu, X. M.; Ren, T. L. High-performance graphene-based flexible heater for wearable applications. RSC Adv. 2017, 7, 27001–27006.

    Article  CAS  Google Scholar 

  60. Zhang, Q. Q.; Yu, Y. K.; Yang, K. C.; Zhang, B. Q.; Zhao, K. R.; Xiong, G. P.; Zhang, X. Y. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers. Carbon 2017, 124, 296–307.

    Article  CAS  Google Scholar 

  61. Zhang, Z. C.; Sun, J. J.; Lai, C.; Wang, Q.; Hu, C. G. High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 2017, 120, 411–418.

    Article  CAS  Google Scholar 

  62. Zhou, R.; Li, P. C.; Fan, Z.; Du, D. H.; Ouyang, J. Y. Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J. Mater. Chem. C 2017, 5, 1544–1551.

    Article  CAS  Google Scholar 

  63. Wang, D.; Li, D. W.; Zhao, M.; Xu, Y.; Wei, Q. F. Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Appl. Surf. Sci. 2018, 454, 218–226.

    Article  CAS  Google Scholar 

  64. Menéndez, J. A.; Phillips, J.; Xia, B.; Radovic, L. R. On the modification and characterization of chemical surface properties of activated carbon: In the search of carbons with stable basic properties. Langmuir 1996, 12, 4404–4410.

    Article  Google Scholar 

  65. Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.

    Article  Google Scholar 

  66. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

    Article  CAS  Google Scholar 

  67. Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C. et al. Wet chemical synthesis of graphene. Adv. Mater. 2013, 25, 3583–3587.

    CAS  Google Scholar 

  68. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  CAS  Google Scholar 

  69. Song, Y. B.; Zhu, S. J.; Xiang, S. Y.; Zhao, X. H.; Zhang, J. H.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 2014, 6, 4676–4682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2016YFA0202900 and 2016YFC1402400), National Natural Science Foundation of China (No. 51672173), Shanghai Science and Technology committee (No. 17JC1400700 and 18520744700), Science and Technology Planning Project of Guangdong Province (No. 2016A010103018). The authors gratefully acknowledge the Shanghai Synchrotron Radiation Facility (SSRF) and Shanghai LEVSON Group Co., Ltd. for the measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuning Ma or Shenmin Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Chen, T., Li, Y. et al. Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency. Nano Res. 12, 2498–2508 (2019). https://doi.org/10.1007/s12274-019-2476-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2476-7

Keywords

Navigation