Skip to main content
Log in

Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An integrated approach combining density functional theory (DFT) calculations and atomic resolution scanning tunneling microscopy (STM) is used to study well-defined iron-doped cobalt oxide nanoislands supported on Au(111). The focus is on the structure and distribution of Fe dopants within these nanoislands of CoO as a function of Fe to Co ratio. The DFT and STM results agree strongly and complement each other to allow for a more complete understanding of the dopant structure trends on the nanoscale. Using Fe as a marker, we first find that the stacking sequence of the moiré structure of the host cobalt oxide nanoislands can be identified unambiguously through a combination of DFT and STM. Using the distinct contrast of the embedded Fe dopant atoms as observed with atom-resolved STM, we find correlations between Fe dopant position and the CoO/Au(111) moiré pattern at varying Fe dopant densities. Formation of Fe-dopant clusters within the nanoislands is investigated in detail through DFT and found to agree with the dopant patterns observed in STM. We find that the structural effects of Fe dopants throughout the nanoislands with the basal planes and the two types of edges—the oxygen and metal edges—have different nature. Both DFT calculations and STM images show a strong preference for Fe dopants to be located directly on or near the oxygen edge of the nanoislands as opposed to being directly on or near the metal edge. Taken together, our results illustrate that Fe dopant incorporation and distribution within CoO nanoislands are highly anisotropic and governed by both the moiré structure of the basal planes as well as nano-size effects present at the under-coordinated edges of different local geometry and chemistries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, C. N. R. Transition metal oxides. Annu. Rev. Phys. Chem. 1989, 40, 291–326.

    Article  Google Scholar 

  2. Barcaro, G.; Fortunelli, A. 2D oxides on metal materials: Concepts, status, and perspectives. Phys. Chem. Chem. Phys. 2019, 21, 11510–11536.

    Article  Google Scholar 

  3. Galatsis, K.; Li, Y. X.; Wlodarski, W.; Comini, E.; Sberveglieri, G.; Cantalini, C.; Santucci, S.; Passacantando, M. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors. Sen. Actuators B: Chem. 2002, 83, 276–280.

    Article  Google Scholar 

  4. Netzer, F. P. “Small and beautiful”—The novel structures and phases of nano-oxides. Surf. Sci. 2010, 604, 485–489.

    Article  Google Scholar 

  5. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  Google Scholar 

  6. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

    Article  Google Scholar 

  7. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  Google Scholar 

  8. Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

    Article  Google Scholar 

  9. Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

    Article  Google Scholar 

  10. Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.

    Article  Google Scholar 

  11. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  Google Scholar 

  12. Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B: Chem. 2007, 121, 18–35.

    Article  Google Scholar 

  13. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

    Article  Google Scholar 

  14. Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

    Article  Google Scholar 

  15. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    Article  Google Scholar 

  16. Yu, J.; Li, Q. Q.; Li, Y.; Xu, C. Y.; Zhen, L.; Dravid, V. P.; Wu, J. S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 2016, 26, 7644–7651.

    Article  Google Scholar 

  17. Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012–6021.

    Article  Google Scholar 

  18. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  19. Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491.

    Article  Google Scholar 

  20. Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni-Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680–6689.

    Article  Google Scholar 

  21. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  Google Scholar 

  22. Deng, X. H.; Tüysüz, H. Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 2014, 4, 3701–3714.

    Article  Google Scholar 

  23. Smith, R. D. L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M. R.; Gonzalez-Flores, D.; Dau, H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 2017, 8, 2022.

    Article  Google Scholar 

  24. Yang, F. K.; Sliozberg, K.; Sinev, I.; Antoni, H.; Bähr, A.; Ollegott, K.; Xia, W.; Masa, J.; Grünert, W.; Cuenya, B. R. et al. Synergistic effect of cobalt and iron in layered double hydroxide catalysts for the oxygen evolution reaction. ChemSusChem 2017, 10, 156–165.

    Article  Google Scholar 

  25. Heinz, K.; Müller, S.; Hammer, L. Crystallography of ultrathin iron, cobalt and nickel films grown epitaxially on copper. J. Phys.: Condens. Matter 1999, 11, 9437–9454.

    Google Scholar 

  26. Mountapmbeme Kouotou, P.; Vieker, H.; Tian, Z. Y.; Tchoua Ngamou, P. H.; El Kasmi, A.; Beyer, A.; Gölzhäuser, A.; Kohse-Höinghaus, K. Structure-activity relation of spinel-type Co-Fe oxides for low-temperature CO oxidation. Catal. Sci. Technol. 2014, 4, 3359–3367.

    Article  Google Scholar 

  27. Haneda, M.; Kawaguchi, Y.; Towata, A. CoOx-FeOx composite oxide prepared by hydrothermal method as a highly active catalyst for low-temperature CO oxidation. J. Ceram. Soc. Jpn. 2017, 125, 135–140.

    Article  Google Scholar 

  28. Enman, L. J.; Burke Stevens, M.; Dahan, M. H.; Nellist, M. R.; Caspary Toroker, M.; Boettcher, S. W. Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 12840–12844.

    Article  Google Scholar 

  29. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  Google Scholar 

  30. Walton, A. S.; Lauritsen, J. V.; Topsøe, H.; Besenbacher, F. MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy. J. Catal. 2013, 308, 306–318.

    Article  Google Scholar 

  31. Li, H. S.; Wang, S. S.; Sawada, H.; Han, G. G. D.; Samuels, T.; Allen, C. S.; Kirkland, A. I.; Grossman, J. C.; Warner, J. H. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. IitACS Nano 2017, 11, 3392–3403.

    Google Scholar 

  32. Li, D.; Niu, Y.; Zhao, H. M.; Liang, C. J.; He, Z. Q. Electronic and magnetic properties of 3D-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study. Phys. Lett. A 2014, 378, 1651–1656.

    Article  Google Scholar 

  33. Zuriaga-Monroy, C.; Martínez-Magadán, J. M.; Ramos, E.; Gómez-Balderas, R. A DFT study of the electronic structure of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters. J. Mol. Catal. A: Chem. 2009, 313, 49–54.

    Article  Google Scholar 

  34. Lauritsen, J. V.; Kibsgaard, J.; Olesen, G. H.; Moses, P. G.; Hinnemann, B.; Helveg, S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E. et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 2007, 249, 220–233.

    Article  Google Scholar 

  35. Robertson, A. W.; Lin, Y. C.; Wang, S. S.; Sawada, H.; Allen, C. S.; Chen, Q.; Lee, S.; Lee, G. D.; Lee, J.; Han, S. et al. Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2. ACS Nano 2016, 10, 10227–10236.

    Article  Google Scholar 

  36. Morales, E. H.; He, Y. B.; Vinnichenko, M.; Delley, B.; Diebold, U. Surface structure of Sn-doped In2O3 (111) thin films by STM. New J. Phys. 2008, 10, 125030.

    Article  Google Scholar 

  37. Myrach, P.; Nilius, N.; Levchenko, S. V.; Gonchar, A.; Risse, T.; Dinse, K. P.; Boatner, L. A.; Frandsen, W.; Horn, R.; Freund, H. J. et al. Temperature-dependent morphology, magnetic and optical properties of Li-doped MgO. ChemCatChem 2010, 2, 854–862.

    Article  Google Scholar 

  38. Cui, Y.; Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Freund, H. J.; Nilius, N. Surface defects and their impact on the electronic structure of Mo-doped CaO films: An STM and DFT study. Phys. Chem. Chem. Phys. 2014, 16, 12764–12772.

    Article  Google Scholar 

  39. Walsh, A.; Catlow, C. R. A. Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. J. Mater. Chem. 2010, 20, 10438–10444.

    Article  Google Scholar 

  40. Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

    Article  Google Scholar 

  41. Chen, H.; Liu, Y.; Yang, F.; Wei, M. M.; Zhao, X. F.; Ning, Y. X.; Liu, Q. F.; Zhang, Y.; Fu, Q.; Bao, X. H. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. J. Phys. Chem. C 2017, 121, 10398–10405.

    Article  Google Scholar 

  42. Giordano, L.; Lewandowski, M.; Groot, I. M. N.; Sun, Y. N.; Goniakowski, J.; Noguera, C.; Shaikhutdinov, S.; Pacchioni, G.; Freund, H. J. Oxygen-induced transformations of an FeO(111) film on Pt(111): A combined DFT and STM study. J. Phys. Chem. C 2010, 11 4, 21504–21509.

    Article  Google Scholar 

  43. Zhang, K.; Li, L. F.; Shaikhutdinov, S.; Freund, H. J. Carbon monoxide oxidation on metal-supported monolayer oxide films: Establishing which interface is active. Angew. Chem., Int. Ed. 2018, 57, 1261–1265.

    Article  Google Scholar 

  44. Sun, Y. N.; Qin, Z. H.; Lewandowski, M.; Carrasco, E.; Sterrer, M.; Shaikhutdinov, S.; Freund, H. J. Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 2009, 266, 359–368.

    Article  Google Scholar 

  45. Merte, L. R.; Knudsen, J.; Eichhorn, F. M.; Porsgaard, S.; Zeuthen, H.; Grabow, L. C.; Lægsgaard, E.; Bluhm, H.; Salmeron, M.; Mavrikakis, M. et al. CO-induced embedding of Pt adatoms in a partially reduced FeOx film on Pt(111). J. Am. Chem. Soc. 2011, 133, 10692–10695.

    Article  Google Scholar 

  46. Li, M.; Altman, E. I. Shape, morphology, and phase transitions during Co oxide growth on Au(111). J. Phys. Chem. C 2014, 118, 12706–12716.

    Article  Google Scholar 

  47. Fester, J.; Sun, Z. Z.; Rodríguez-Fernández, J.; Walton, A.; Lauritsen, J. V. Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): The role of edge sites and substrate interactions. J. Phys. Chem. B 2018, 122, 561–571.

    Article  Google Scholar 

  48. Walton, A. S.; Fester, J.; Bajdich, M.; Arman, M. A.; Osiecki, J.; Knudsen, J.; Vojvodic, A.; Lauritsen, J. V. Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 2015, 9, 2445–2453.

    Article  Google Scholar 

  49. Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; Vojvodic, A.; Lauritsen, J. V. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 2017, 8, 14169.

    Article  Google Scholar 

  50. Fester, J.; Bajdich, M.; Walton, A. S.; Sun, Z.; Plessow, P. N.; Vojvodic, A.; Lauritsen, J. V. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111). To p. Catal. 2017, 60, 503–512.

    Article  Google Scholar 

  51. Fester, J.; Makoveev, A.; Grumelli, D.; Gutzler, R.; Sun, Z. Z.; Rodríguez-Fernández, J.; Kern, K.; Lauritsen, J. V. The structure of the cobalt oxide/Au catalyst interface in electrochemical water splitting. Angew. Chem., Int. Ed. 2018, 57, 11893–11897.

    Article  Google Scholar 

  52. Reticcioli, M.; Sokolović, I.; Schmid, M.; Diebold, U.; Setvin, M.; Franchini, C. Interplay between adsorbates and polarons: CO on rutile TiO2(110). Phys. Rev. Lett. 2019, 122, 016805.

    Article  Google Scholar 

  53. Meier, M.; Hulva, J.; Jakub, Z.; Pavelec, J.; Setvin, M.; Bliem, R.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G. S. Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. USA 2018, 115, E5642–E5650.

    Article  Google Scholar 

  54. Rodríguez-Fernández, J.; Sun, Z. Z.; Zhang, L.; Tan, T.; Curto, A.; Fester, J.; Vojvodic, A.; Lauritsen, J. V. Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). J. Chem. Phys. 2019, 150, 041731.

    Article  Google Scholar 

  55. Giordano, L.; Pacchioni, G.; Goniakowski, J.; Nilius, N.; Rienks, E. D. L.; Freund, H. J. Interplay between structural, magnetic, and electronic properties in a FeO/Pt (111) ultrathin film. Phys. Rev. B 2007, 76, 075416.

    Article  Google Scholar 

  56. Cullen, W. G.; First, P. N. Island shapes and intermixing for submonolayer nickel on Au(111). Surf. Sci. 1999, 420, 53–64.

    Article  Google Scholar 

  57. Voloshina, E. N.; Fertitta, E.; Garhofer, A.; Mittendorfer, F.; Fonin, M.; Thissen, A.; Dedkov, Y. S. Electronic structure and imaging contrast of graphene moiré on metals. Sci. Rep. 2013, 3, 1072.

    Article  Google Scholar 

  58. Bruix, A.; Miwa, J. A.; Hauptmann, N.; Wegner, D.; Ulstrup, S.; Grønborg, S. S.; Sanders, C. E.; Dendzik, M.; Grubišić Čabo, A.; Bianchi, M. et al. Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction. Phys. Rev. B 2016, 93, 165422.

    Article  Google Scholar 

Download references

Acknowledgements

A. V. acknowledges the Canadian Institute for Advanced Research (CIFAR) for support through the Bio-inspired Solar Energy Program. J. V. L. and J. R.-F. acknowledge the VILLUM foundation. Z. Z. S. would like to acknowledge financial support from the China Scholarship Council (CSC). L. Z., T. T., and A. V. would like to acknowledge the use of the computer time allocation at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE) supported through National Science Foundation Energy under Award Number CHE160084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Vojvodic.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curto, A., Sun, Z., Rodríguez-Fernández, J. et al. Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111). Nano Res. 12, 2364–2372 (2019). https://doi.org/10.1007/s12274-019-2474-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2474-9

Keywords

Navigation